

Diagnostic de la qualité du sol

EPFLI
Ancien site IBM
COMBLEUX (45)

Rapport final

Réf.: A2205-313_R_BB _1b

Date: 03.08.2022

sites et sols pollués

FICHE ADMINISTRATIVE DU DOSSIER

Siège social	Rapport établi par l'agence
2-4 rue Hector Berlioz	L'agence de Rouen
38 110 LA TOUR DU PIN	56 rue Chasselièvre
Tel : 04 74 83 62 16	76 000 ROUEN
Fax : 04 74 33 97 83	Tel : 02 32 10 73 30
SIRET: 512 308 321 00052 / APE:7112 B	Fax: 02 35 98 19 20

		Suivi
Version a	08/07/2022	Non concernée
Version b	03/08/2022	Document modifié suite mail du 27/07/2022

L'équipe projet :

Ingénieur d'études	Chef de projet	Superviseur	
Alice MONCORGER	Marie-Annick JAOUEN	Stéphane VIRCONDELET	
Mail: a.moncorger@envisol.fr Tel: 07 50 61 75 24	Mail: ma.jaouen@envisol.fr Tel: 06 70 18 84 57	Mail: s.vircondelet@envisol.fr Tel: 6 98 89 82 97	
Contrigue	as	- Januardelist-	

Référentiels encadrant le dossier :

Ce document et ses annexes sont la propriété d'ENVISOL. Il ne peut être utilisé, reproduit ou communiqué même partiellement sans son autorisation.

SOMMAIRE

1		CONTEXTE9				
2		OBJECTIFS9				
3	SOURCES D'INFORMATIONS					
4		PRES	SENT	TATION DU SITE	11	
	4.	1	Loca	alisation	11	
	4.	2	Visit	te de site – A100	14	
	4.	3	Usa	ge futur - projet d'aménagement	18	
5		ETU	DE H	IISTORIQUE ET DOCUMENTAIRE - A110	19	
	5.	1	Synt	thèse historique	19	
	5.	2	Plar	n de localisation des activités historiques et actuelles	25	
	5.	3	Inci	dents et accidents répertoriés	27	
	5.4	4	Limi	ites et incertitudes de l'étude historique et documentaire	27	
6		SYN	THES	SE DES ETUDES PRECEDENTES	28	
7		ENV	IRON	NNEMENT DU SITE - A120	32	
	7.	1	Con	texte météorologique	32	
	7.	2	Con	texte topographique	32	
	7.	3	Con	texte hydrologique	34	
	7.4	4	Con	texte géologique	34	
		7.4.2	1	Contexte géologique régional	34	
		7.4.2	2	Contexte géologique local	34	
	7.	5	Con	texte hydrogéologique	37	
		7.5.2	1	Contexte régional	37	
		7.5.2	2	Contexte local	39	
		7.5.3	3	Usage des eaux souterraines	39	
	7.	6	Site	s inscrits et espaces naturels remarquables	42	
	7.	7	Vulr	nérabilité et sensibilité des eaux souterraines et superficielles	45	
	7.	8	Con	texte industriel	45	
	7.9	9	Limi	ites - incertitudes de l'étude du contexte environnemental	48	
8		IDEN	NTIFI	CATION DES ZONES POTENTIELLEMENT POLLUEES	49	
9		PRO	GRA	MME DE RECONNAISSANCES - A130	54	
10)	D	IAGN	NOSTIC DE QUALITE DES MILIEUX	57	
	10).1	Hyg	iène, sécurité et environnement	57	

10.2 Alea	as de chantier - synthese des écarts	58		
10.3 Inve	10.3 Investigations réalisées			
10.4 Inve	0.4 Investigations des sols - A200			
10.4.1 Réalisation des sondages sol		61		
10.4.2	Résultats analytiques	66		
10.4.2	.1 Valeurs de références	66		
10.4.2	.2 Résultats	66		
10.4.3	Interprétation de l'état du milieu sol	73		
10.5 GES	TION DES TERRES EXCAVEES	75		
10.6 Inve	estigations des gaz du sol - A230	79		
10.6.1	Réalisation des piézairs	79		
10.6.2	Réseau de piézairs	80		
10.6.3	Prélèvements des gaz du sol et programme analytique	81		
10.6.4	Résultats analytiques	82		
10.6.5	Interprétation de l'état du milieu gaz des sols	84		
11 SYNTH	IESE DE L'ETAT DES MILIEUX ET MISE A JOUR DU SCHEMA CONCEPTUEL	86		
11.1 Syn	thèse de l'état des milieux	86		
11.2 Ince	ertitudes	87		
11.3 SCH	EMA CONCEPTUEL	88		
11.3.1	Principe	88		
11.3.2	Principales propriétés des substances présentes	88		
11.3.3	Schéma conceptuel	89		
12 CONC	LUSIONS	92		
13 RESTR	ICTIONS D'USAGE DU DOCUMENT	94		
14 ANNE	XES	96		
LISTE DES	FIGURES			
LISTE DES	TIGORES .			
Fiaure 1 : Local	isation du site sur carte IGN (Géoportail)	12		
	ise du site sur photographie aérienne			
	de localisation des activités et installations actuelles			
Figure 4 : Plan	de localisations des activités exercées de 1966 à 2006	26		
-	sation des sources potentielles de pollution et des sondages sur le site d'IBM à Saint J	•		
(Kapport d'AN)	EA 2001)	31		

Figure 6 : Profils topographiques du site du nord au sud (gauche) et d'est en ouest (droite) (source Géopor	
Figure 7 : Carte géologique au 1 :50 000 de la région de Combleux et sa légende	35
Figure 8 : Coupe géologique du forage BSS001AFDS.	36
Figure 9 : Extrait de la carte hydrogéologique d'Orléans (SIGES) (la flèche bleue représente le sens d'écouler des eaux de la nappe de la Beauce)	
Figure 10. Localisation des ouvrages recensés au voisinage du site (1 km)	40
Figure 11. Localisation des captages d'eau potable en proximité du site d'étude et des périmètres de protection des captages d'écoulement en bleu)	
Figure 12 : Localisation des espaces naturels remarquables (ZNIEFF type I).	42
Figure 13. Localisation des espaces naturels remarquables (ZNIEFF type II).	43
Figure 14. Localisation des espaces naturels remarquables (sites Natura 2000 – Directive Oiseaux)	43
Figure 15. Localisation des espaces naturels remarquables (sites Natura 2000 – Directive Habitats)	44
Figure 16 : Localisation des sites ICPE/BASIAS/SIS/ex-BASOL (flèche bleue = sens d'écoulement des es souterraines).	
Figure 17. Plan détaillé des installations du site (Préfecture du Loiret, 5 février 1975)	51
Figure 18 : Localisation des zones potentiellement polluées	53
Figure 19 : Localisation des investigations sols prévisionnelles.	56
Figure 20 : Localisation des investigations réalisées.	59
Figure 21. Localisation des investigations réalisées au niveau du bâtiment CT1	60
Figure 22. Cartographie des résultats obtenus sur les sols (brut et éluat)	74
Figure 23. Cartographie des résultats selon critère ISDI	78
Figure 24. Cartographie des résultats obtenus sur les gaz du sol	85
Figure 25 : Schéma conceptuel initial du site - usage future sensible	91
LISTE DES TABLEAUX	
Tableau 1 : Synthèse des sources d'informations — Étude historique	10
Tableau 2 : Synthèse de la visite de site – descriptif du site	14
Tableau 3 : Synthèse de la visite de site – activités exercées sur le site	16
Tableau 4 : Synthèse de la visite de site – Zones de stockage sur le site	17
Tableau 5 : Situation administrative du site d'étude.	19
Tableau 6. Synthèse historique des activités	20
Tableau 7. Description des stockages de produits	25
Tableau 8 : Synthèse des études précédentes	29
Tableau 9. Synthèse des précédentes investigations et des impacts détectés	30
Tableau 10. Description des ouvrages se situant dans un rayon de 1 km autour du site	40
Tableau 11 : Synthèse sur la vulnérabilité des milieux et la sensibilité des usages	45

Tableau 12 : Synthèse des sites industriels dans un rayon de 1000 mètres autour du site	45
Tableau 13 : Zones potentiellement polluées	49
Tableau 14. Tableau des investigations prévisionnelles sur les sols	54
Tableau 15. Tableau des investigations prévisionnelles des gaz du sol	55
Tableau 16 : éléments relatifs à l'hygiène, la sécurité et l'environnement de l'intervention	57
Tableau 17 : Synthèse des investigations menées	58
Tableau 18 : Méthodologie employée pour l'investigation des sols.	61
Tableau 19 : Synthèse des investigations réalisées sur les sols, lithologie, échantillonnage e analytique	
Tableau 20. Valeurs de références dans les sols	66
Tableau 21. Résultats analytiques sur les sols brut	67
Tableau 22. Résultats analytiques sur les sols brut	68
Tableau 23. Résultats analytiques sur les sols brut	69
Tableau 24. Résultats analytiques sur les sols brut	70
Tableau 25. Résultats analytiques sur les sols brut	71
Tableau 26. Résultats analytiques sur les sols brut	72
Tableau 27 : Résultats analytiques sur les sols sur éluât (1/2)	76
Tableau 28. Résultats analytiques sur les sols sur éluât (1/2)	77
Tableau 29 : Réalisation des piézairs.	79
Tableau 30 : Informations techniques relatives aux piézairs	80
Tableau 31 : Prélèvements et échantillonnage des gaz des sols	81
Tableau 32 : Prélèvements et échantillonnage des gaz des sols	81
Tableau 33 : Paramètres de prélèvement et volumes prélevés	82
Tableau 34. Résultats analytiques des gaz du sol.	83
Tableau 35. Incertitudes associées à l'étude et modalité de leur réduction	87
Tableau 36 : Schéma conceptuel. Tableau 37. Schéma conceptuel initial	89
LISTE DES ANNEXES	
Annexe 1 : Contexte réglementaire et normatif	97
Annexe 2 : Plan cadastral et PLU	100
Annexe 3 : Questionnaire synthétique de la visite de site	103
Annexe 4 : Récépissé de déclaration et autorisation	104
Annexe 5 : Les fiches terrain des sondages de sols	105
Annexe 6 : Bordereaux d'analyses du laboratoire – résultats sol	106
Annexe 7 : Coupes lithologiques et techniques des piézairs	107
Annexe 8 : Fiches de prélèvements des piézairs	108

RESUME NON TECHNIQUE

Contexte et objectifs de l'étude	Dans le cadre d'un projet de requalification d'une partie de l'ancien site IBM correspondant au foncier appartenant à l'EPFLI, qui a mandaté ENVISOL pour la réalisation d'une étude historique et documentaire ainsi qu'un diagnostic de pollution des sols d'une partie de l'ancien site IBM sis Lieu-dit Clos du petit et du grand Poinville à Combleux (45). L'objectif de cette étude est de mettre à jour l'étude historique et documentaire réalisée par ANTEA (missions INFOS / A100, A110, A120 et A130) ; d'élaborer un programme des investigations à mettre en œuvre à l'échelle du site, de réaliser ces investigations sur les différents milieux pertinents (sols et gaz du sol : missions DIAG / A200, A230 et A260op) et enfin, d'interpréter les résultats et établir le schéma conceptuel du site (mission A270). Le terrain, d'une assiette foncière de 106 879 m² a connu une activité tertiaire de data center depuis la fin des années 60, puis est devenu une friche tertiaire depuis 2005.
Situation administrative du site	Le site est référencé dans la base de données des ICPE sous le régime de la déclaration depuis 1975 jusque 2006 pour l'exploitation d'une installation de combustion, d'un dépôt de 2048 kg de gaz combustible liquéfié, des ateliers de charge d'accumulateurs, de deux réservoirs aériens d'huile, d'une chaufferie, d'un dépôt d'essence, de white spirit et des trichloroéthylène, de compresseurs d'air et de trois citernes de fuel. En 2006, un arrêté préfectoral donne acte à IBM de la cessation de ses activités.
	Le site a été exploité pour une activité de data center de la fin des années 1960 à 2005.
Historique du site	Préalablement, des champs agricoles occupaient les lieux.
mstorique du site	Actuellement et depuis la cessation de ses activités (2006), le site est une friche tertiaire. Les bâtiments du site ont été déconstruits en 2019 à l'exception du bâtiment CT1.
	D'après les coupes des sondages réalisées sur le site, une couche de remblais argilo-sableux est présente sur le site, puis de l'argile sableuse, et enfin des marnes beiges.
Contexte	La nappe est présente à 3 m de profondeur et s'écoule vers le sud-ouest. Elle est considérée comme vulnérable et moyennement sensible (présence de puits à usage agricole en latéral et de puits AEP à plus d'un km en latéral du site).
environnemental du site	Les eaux superficielles présentent des usages sensibles de pêche et sont considérées comme vulnérables du fait de leur distance au site.
	Concernant le contexte industriel, à proximité de la zone d'étude et en amont hydraulique proche, deux sites BASIAS ont été recensés dont un garage automobile et une station-service au nord-est. On ne peut donc pas écarter le risque d'un éventuel transfert de pollution, renforcé par la vulnérabilité de la nappe.
Zones de pollution potentielle identifiées et investigations menées	19 zones à risques de pollution potentielle ont été recensées, comprenant 7 anciens transformateurs à PCB, un atelier de charge d'accumulateurs, un pont hydraulique, un bac à graisses, trois cuves de fuel, une cuve d'huiles, un groupe électrogène, une fosse de reprise des eaux usées, une ancienne cuve d'acide sulfurique, deux parkings et une zone d'enfouissement et de dépôt sauvage. Ces zones sont réparties près et au droit des anciens bâtiments du site.
Interprétation des	Les résultats des investigations font état :
résultats	Sols:

Etat des milieux	 des anomalies faibles à modérées et localisées en métaux (arsenic et cuivre), non significatives d'impacts au niveau du bâtiment B2 (S2) et du bâtiment CT2 (S15); une teneur notable en PCB au droit de l'ancien transformateur du bâtiment B1 (S1). Cette teneur est retrouvée sur l'échantillon de surface (0-1m) mais est cerné en profondeur par l'échantillon de 1 à 2 m, lequel présente une teneur moindre en PCB; Gaz du sol :
	 Un bruit de fond est présent sur l'ensemble du site en hydrocarbures aliphatiques ; Le piézair au droit de l'ancien transformateur du bâtiment CT2 présente globalement des concentrations supérieures aux autres piézairs du site.
Gestion des terres excavées	Concernant l'éventuelle gestion de terres excavées en phase de réaménagement du site un unique dépassement sur éluât des critères d'acceptabilité des terres ISDI en fluorures pour un échantillon (S17 0-1m) est relevé. En cas d'excavation et évacuation hors site, les matériaux issus de cette zone devront être évacués en filière spécifique. Également, des analyses complémentaires sur les sols excavées devront être
EXLAVEES	réalisées si le projet prévoit des excavations afin de déterminer leur filière d'évacuation. Les filières d'évacuation et les centres de traitement restent souverains pour l'acceptation de terres excavées. Une consultation des filières doit être réalisée avant la phase des travaux pour fiabiliser et optimiser les coûts de traitement de sols non inertes.
Schéma conceptuel	Le schéma conceptuel a été établi sur la base des résultats des investigations. Il a mis en évidence un risque potentiel lié à l'inhalation des futurs travailleurs et résidents adultes et enfant de substances gazeuses issues du sous-sol au droit notamment du bâtiment CT2 (hydrocarbures volatils, BTEX et chlorure de vinyle dans les gaz du sol),). Il est rappelé que l'aménagement futur du site n'est pas connu à ce jour
Conclusion et recommandations	 Lorsque le projet d'aménagement futur sera défini, ENVISOL recommande La réalisation de sondages complémentaire et l'implantation de piézair dans la zone du CT2 là où un impact sur les gaz du sol a été mis en évidence. Ce bâtiment ayant accueilli des stockages divers (huile, essence, fuel, white spirit, trichloroéthylène). la réalisation d'une nouvelle campagne de prélèvement des gaz du sol afin de valider la comptabilité sanitaire du sous-sol avec son usage futur. Si un impact est confirmé sur les gaz du sol, la mise en place de piézomètre sur site, notamment autour du bâtiment CT2, et la réalisation d'une évaluation quantitative des risques sanitaire et d'un plan de gestion. Dans le cadre de futures excavations, la réalisation d'investigations complémentaires (analyses de type ISDI) sur les terres excavées.

Cette synthèse non technique, volontairement simplificatrice, fait partie intégrante du présent rapport et en est indissociable. Pour sa bonne compréhension, une lecture exhaustive du présent rapport est nécessaire.

1 CONTEXTE

Dans le cadre d'un projet de requalification de l'ancien site IBM sis à Combleux (45), l'EPFLi souhaite la réalisation d'un diagnostic de la qualité des sols afin d'obtenir une information sur l'état environnemental du site et ainsi anticiper toute problématique éventuelle associé à ce dernier.

Le site a fait l'objet des 2 études environnementales préalables :

- Un diagnostic initial intégrant une étude historique et documentaire et des investigations sur les sols (ANTEA, juin 2001),
- Une évaluation environnementale (ASTM Phase 1) intégrant une mise à jour de l'étude documentaire sans investigations complémentaires (ANTEA, mai 2004).

Ces études présentent un certain nombre d'incertitudes liées notamment à leur ancienneté et de la non exhaustivité des documents disponibles.

Aussi, avant tout projet de requalification, il apparaît nécessaire de compléter/mettre à jour la connaissance de l'état environnemental du site.

D'après les informations transmises par l'EPFLi, à ce stade aucun projet de réaménagement n'a été défini.

2 OBJECTIFS

L'objectif de cette étude est la définition de l'état du site, en intégrant les données déjà acquises et en les complétant par de nouvelles investigations sur les milieux. Elle a été établie sur la base des informations fournies par l'EPFLi.

Elle concerne les missions suivantes :

- Mise à jour de l'étude historique et documentaire d'ANTEA (missions INFOS / A100, A110 et A120) ;
- Elaboration du programme des investigations à mettre en œuvre à l'échelle du site, sur la base de l'étude historique mise à jour et des données disponibles dans les études antérieures (mission A130)
- Réalisation des investigations sur les différents milieux pertinents (sols et gaz du sol : missions DIAG / A200,A230 et A260) ;
- Interprétation des résultats et établissement du schéma conceptuel du site (mission A270).

Le terrain, d'une assiette foncière de 106 879 m² a connu une activité tertiaire de data center depuis la fin des années 60, puis est devenu une friche tertiaire depuis 2005.

Cette étude a été menée conformément à la méthodologie développée par le ministère en charge de l'environnement (avril 2017) ainsi qu'aux exigences et préconisations de la norme NF X 31-620-2 (décembre 2021) - prestations globales INFOS et DIAG, codes missions A100, A110, A120, A130, A200, A230, A260 et A270.

L'Annexe 1 présente la liste des référentiels règlementaires et normatif utilisé dans le cadre de l'étude.

3 SOURCES D'INFORMATIONS

Le tableau suivant présente les sources d'informations consultées ayant permis de réaliser l'étude historique et documentaire.

Tableau 1 : Synthèse des sources d'informations – Étude historique.

Sources	Informations / Données
Préfecture / DDPP /	Données sur les activités industrielles
ICPE	Service Installations Classées pour la Protection de l'Environnement, et Direction départementale de la Protection des populations.
	Risques recensés (inondation, risque industriel, transport, etc.)
	Secteur d'Information sur les Sols (SIS) et Servitudes d'Utilité Publiques (SUP)
GEORISQUES / SIS et SUP	SIS: Secteurs d'Information sur les Sols: données intégrées aux documents d'urbanisme dont les terrains où la connaissance de la pollution des sols justifie, notamment en cas de changement d'usage, la réalisation d'études de sols et la mise en place de mesures de gestion de la pollution pour préserver la sécurité, la santé ou la salubrité publique et l'environnement (article L556-2 du Code de l'environnement).
GEORISQUES / CASIAS	Recensement des différents sites qui accueillent ou ont accueilli dans le passé des activités polluantes ou potentiellement polluantes.
GEORISQUES / Base de données des ICPE	Recensement des installations soumises à autorisation ou à enregistrement (en construction, en fonctionnement ou en cessation d'activité)
Géoportail	Anciennes photographies aériennes de l'IGN à différentes dates, disponibles sur le site internet du Géoportail - évolutions constatées sur les parcelles et autour.
Archives Départementales et Préfectorales /DREAL	Documents relatifs à l'exploitation d'installations classées (arrêtés, enquêtes, études) Plans
Données client	Anciens rapports d'ANTEA (2001 et 2004) – arrêtés préfectoraux principaux
Infoterre	Banque de données du Sous-Sol (BSS), Bureau de Recherches Géologiques et Minières (BRGM) – géologie, ouvrages de prélèvements des eaux souterraines
ADES, BNPE, les agences de l'eau, SIGES	Données sur les captages et la qualité des eaux
ARS	Usages des eaux / captages AEP
Site DREAL	Nature, paysage et biodiversité (ZNIEFF, ZICO, NATURA 2000, etc)
ARIA/BARPI	Base de données sur les accidents répertorié qui ont, ou auraient pu porter atteinte à la santé, la sécurité publiques ou à l'environnement

4 PRESENTATION DU SITE

4.1 Localisation

Le site est localisé sur la commune de Combleux, dans le département du Loiret (45). Il est situé à 5 km à l'est d'Orléans, entre la rivière de la Bionne au nord et la Loire/le Canal d'Orléans au sud.

Son adresse exacte est la suivante :

Lieu-dit Clos du petit et du grand Poinville

COMBLEUX (45)

La superficie totale du terrain étudié (partie sud-est de l'ancien site IBM concernée par la commune de COMBLEUX) est de l'ordre de 106 879 m². La surface bâtie totale était auparavant de 36 705 m² (bâtiments B1-B2, CT1, CT2 et PVLc) et n'est aujourd'hui plus que de 3 147 m² (bâtiment CT1). Il se trouve à la cote NGF approximative de +100 m NGF (Nivellement Général de la France).

L'Annexe 2 présente un extrait du plan cadastral et du PLU de la zone d'étude.

Le site se trouve en zone péri-urbaine de centralité (UB) selon le Plan Local d'Urbanisme (PLU). Il concerne les parcelles suivantes : A 1154, 1149, 1152, 1155, 1158, 1157, 338, 1165, 1151, 1156, 1150, 1175, 1170, 1174, 1176, 346, 1177, 345, 1171, 1168, 1173, 1167, 1172, 1166, 1180, 1179, 1178, 856, 1182, 853, 851.

D'après le PPRI, le site se trouve dans une zone de périmètre de risques : risque d'expansion de crue (aléa faible à très fort selon les zones) (annexe 2).

Le site est dans un environnement de type urbain. Il est bordé :

- → Au nord, par la rivière de la Bionne, la route nationale 460 et au-delà par une zone résidentielle ;
- → Au sud par le chemin de la Canche (chemin de halage), qui longe en partie le canal d'Orléans ; puis la Loire et les ZNIEFF de type I et II ainsi que des sites Natura 2000 (directive habitat et oiseaux)
- → A l'est par des terrains agricoles puis une zone résidentielle ;
- → A l'ouest, par des zones naturelles avec des arbres et une zone résidentielle.

Les figures suivantes présentent la localisation du site à l'étude.

Figure 1 : Localisation du site sur carte IGN (Géoportail).

Figure 2 : Emprise du site sur photographie aérienne.

4.2 Visite de site - A100

Une visite détaillée du site a été effectuée le 24 mai 2022 par un ingénieur ENVISOL en présence de M. PABUT Thierry de l'EPFLi. Le questionnaire réalisé est présenté en **Annexe 3.**

Cette visite a eu pour objet :

- → D'évaluer et examiner l'occupation actuelle du site et de son environnement ;
- → De repérer d'éventuelles installations suspectes en matière de pollution potentielle au droit ou à proximité immédiate du site ;
- → De visualiser l'état des milieux en surface, les éventuelles zones d'activités et de stockages, les réseaux enterrés, les points de rejets et les contraintes d'accès, afin de pouvoir proposer, si nécessaire, un plan d'investigations adapté au contexte du site ;
- → D'identifier d'éventuelles mesures de mise en sécurité immédiate du site à prévoir.

Les éléments recueillis sont présentés dans les tableaux ci-dessous. Une description globale du site est apportée dans le tableau ci-dessous. Cependant, du fait de la démolition des bâtiments, les activités potentiellement polluantes n'étaient plus visibles, hormis la cuve près du bâtiment CT1.

Tableau 2 : Synthèse de la visite de site – descriptif du site.

Propriétaire	EPFLi
Usages actuels	Friche tertiaire
Activités exercées	Aucune depuis la cessation d'activité
Données collectées / interview réalisée	La rive gauche de la rivière a été aménagée et défrichée. Un talus à pente douce a été créé l'objectif est de réaliser un bassin tampon dans le cadre de la gestion des crues.
Contraintes d'accès	Attention ne pas prendre le chemin qui passe au nord de l'egisse : tougnon ne passe pas Prendre le chemin de halage Les flèches jaunes sont des voies vélo / piéton : être vigilent Accès site TOTELS - 9273
Mode de chauffage	Auparavant : Trois citernes de fuel

Utilités (eau, gaz, électricité)	 Présence de transformateurs avec PCB remplacés par des transformateurs secs en 1992 et démantelés en 2010; L'exutoire des eaux pluviales était la Bionne et IBM disposait de 3 points de rejets dont 2 munis de séparateurs d'hydrocarbures (au niveau du bâtiment CT2 et du parking P8); La société IBM a exploité un forage (n° 363-7x-0167) captant les calcaires de la Beauce, à 38.4 m de profondeur; Réseaux de gaz naturels dans la partie sud-est (reliant le bâtiment CT1 et CT2 et passant par le bâtiment PVL 	
Recouvrement du site	Tous les bâtiments à l'exception du CT1 ont été démolis et tout a été remblayé	
Zone de remblaiement	Les anciens bâtiments B1 et B2, CT2 et PVL ont été détruits et remblayés	
Risque pyrotechnique mentionné	Non mentionné par le client	
Recensement des ouvrages existants et vérification de leur état	/	
Mesures d'urgence de mise en sécurité à mettre en œuvre	/	
Autres (si nécessaire)	/	

Tableau 3 : Synthèse de la visite de site – activités exercées sur le site.

Lacelization	A akii iik fa	nt.	Design and the design and the	Illustration		
Localisation	Activités	Niveau	Revêtement / état des surface	Avant démolition (si réalisée)	Actuellement	
Bâtiment B1 et B2	Data center	3	Remblais argilo-sableux			
Bâtiment CT1	Restaurant	2	Dalle béton de 10 cm			
Bâtiment CT2	Centre technique	3	Remblais argilo-sableux			

Bâtiment PVL Bureaux 2 Remblais argilo-sableux

Tableau 4 : Synthèse de la visite de site – Zones de stockage sur le site.

Localisation	Nature du stockage	Contenu / Volume	Etats / observations	Illustration
Bâtiment CT1	Cuve enterrée de FOD de 10 m³	Fuel	Enterrée, pas de souillures visibles	

L'ensemble des éléments précédemment cités sont localisées sur la figure ci-dessous.

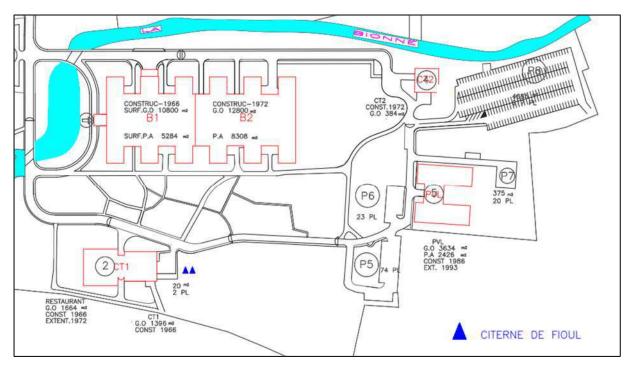


Figure 3. Plan de localisation des activités et installations actuelles

4.3 Usage futur - projet d'aménagement

L'usage futur du site est aujourd'hui encore en cours de discussion et un schéma conceptuel mixte a été considéré en accord avec l'EPFLi : jardins ornementaux avec zone de promenade (côté rivière) avec apport de terre, habitations et tertiaires (localisation non définie).

En définitive, l'usage projeté des lieux est de type sensible avec l'utilisation des terrains pour des activités impliquant des travailleurs, adultes et enfants.

Aucun plan n'est à ce jour disponible sur l'esquisse du futur projet.

5 ETUDE HISTORIQUE ET DOCUMENTAIRE - A110

Actuellement le site n'est plus référencé comme Installation Classée pour la Protection de l'Environnement (ICPE) depuis le 30 octobre 2006. Il était autrefois soumis à autorisation au titre des ICPE mais est aujourd'hui en cessation d'activité prononcée depuis fin 2005. L'Annexe 5 présente les pièces administratives re

Tableau 5 : Situation administrative du site d'étude.

Date de l'arrêté préfectoral	Régime	Code rubrique	Activité	Pièces administratives de référence	Fin d'activité / Cessation
18/04/1995	Autorisation	2920-2	Installation de réfrigération ou compression		Oui 31/12/2005
18/04/1995	Déclaration	2910-A2)	Installations de combustion (3 chaudières, 3 groupes électrogènes)	Rapport de l'inspection des	Oui 31/12/2005
18/04/1995	Non classée	1430/1432	Stockage en réservoirs manufacturés de liquides inflammables Deux cuves de fuel de 10 m³ chacune	installations classées (DRIRE, 12 octobre 2006) ANTEA (juillet 2004)	Oui 31/12/2005
15/06/2005	Déclaration	2921-2	Installation de refroidissement		Oui 31/12/2005

5.1 Synthèse historique

L'historique du site est synthétisé au sein du tableau suivant. L'évolution de la configuration du site, des activités et des installations ont été retracées à partir des photographies aériennes, des documents fournis par le client ainsi que des documents récoltés aux archives départementales et à la DREAL.

Le site exploitait également un forage captant les calcaires de Beauce, à 38,4 m de profondeur, en 2006, la tête du forage a été dégagé et la plaque de forage a été cadenassée.

Tableau 6. Synthèse historique des activités

Date / Source	Données collectées	Synthèse et commentaires
Avant 1966 (Géoportail)		Terrains à vocation agricole (champs et vergers)
1966 (Géoportail)	B1 CT1	Acquisition du site par IBM France – première activité (activité tertiaire de bureautique et administrative) Construction du bâtiment B1 et la partie est du CT1
Fin 60' (Géoportail)		Construction du bâtiment B1 sur l'ancien lit de la rivière Bionne (qui a été déviée) et du bâtiment CT1

44 46 1 4071		
14 décembre 1971 (Rapport de l'ingénieur subdivisionnaire des T.P.E. (Mines) du 3 janvier 1975)	Arrêté préfectoral rangeant l'établissement en 2 ^{ème} classe pour ses activités de dépôt de gaz liquéfié sous pression (60 m³ de propane dans le CT2) ainsi que d'un atelier de recharge d'accumulateurs d'une puissance supérieure à 2,5 kw (bâtiment B2)	
15 janvier 1973 (ANTEA 2004)	Arrêté préfectoral relatif à une installation de combustion (CT1), dépôt de liquides inflammables de 2e catégorie (CT1), activité de compression d'air et de gaz combustible (tous les bâtiments) et activité de dépôt de gaz combustibles liquéfiés conservés en récipients métalliques	
1974-1975 (ANTEA 2004)	B2 CT2	Construction des bâtiments B2 (extension de B1) et CT2
05 février 1975 (Récépissé de déclaration du 5 février 1975 ; ANTEA 2004)	Récépissé des déclarations des 18 mai 1973, 5 septembre 1973 et 25 octobre 1974 relatives à l'exploitation d'une installation de combustion (composée de deux générateurs dans le CT1), d'un dépôt de 2048 kg de gaz combustible liquéfié (CT1), des ateliers de charge d'accumulateurs (B2), de deux réservoirs aériens d'huile (CT2), d'une chaufferie (au centre de séminaire), et d'un dépôt d'essence, de white spirit et du trichloroéthylène (CT2), des compresseurs d'air (douze stations réparties au sous-sol du CT1 et du B1, au sous-sol et au 2e étage du B2 et dans le CT2), et de trois citernes de fuel (une de 10 000 l au centre de séminaire, les deux autres de 40 000 l à l'est de CT1).	
16 février 1975 (ANTEA 2004)	Récépissé de déclaration complémentaire à celle du 18 juin 1970 relative à une installation de combustion composée de deux générateurs d'une puissance nominale de 1800 th/h (bâtiment CT1)	
1984 (ANTEA 2004)	Installation du bâtiment Rive de Loire (activité de bureautique) en préfabriqué	

1986 (Géoportail)	PVL Rive de Lojre	Construction du bâtiment PVL (Point Ville)– Le site a atteint sa forme la plus aboutie
26 août 1986 (ANTEA 2004)	Déclaration relative à l'exploitation de transformateurs à PCB (2 dans le bâtiment B1, 2 dans le CT1, 2 dans le CT2 et 1 dans le PVL)	
28/08/1992 (Recommandé d'IBM)	Création d'un atelier de charge de batteries et onduleur au sein du bâtiment B2 en rez- de-jardin	
18 avril 1995 (ANTEA 2004)	Arrêté préfectoral Autorisation d'exploitation d'installations de réfrigération dans les bâtiments CT1 (chambres froides) et CT2 (tour aéroréfrigérante)	
31 janvier 1995 (ANTEA 2004)	Rapport de l'Inspecteur des Installations Classées, Directeur Régional de l'Industrie, de la Recherche et de l'Environnement (DRIRE) émettant un avis favorable pour l'autorisation de l'extension des installations de réfrigération	
1995-1996 (ANTEA 2004)	Désamiantage du bâtiment B1	
Juin 2001 (ANTEA 2004)	Diagnostic environnemental (ANTEA)	
24 janvier 2003	La société Tractebel Elyo informe qu'elle a changé deux cuves à fuel de 40 m³ (à l'est du CT1) et une d'huile de 3 m³ (au sud-est de CT2) sur le site	
03 octobre 2003	La société IBM France sollicite la mise à jour de son arrêté préfectoral du 18 avril 1995 suite aux modifications intervenues sur les installations de réfrigération (suppression d'un groupe CARRIER de 95 KW situé dans le bâtiment Rive de Loire)	
1 ^{er} décembre 2003	Rapport de l'Inspecteur des Installations classées, Direction Régionale de l'Industrie, de la Recherche et de l'Environnement (DRIRE) demandant la mise en place d'un échantillonneur automatique ainsi qu'une convention pour le raccordement des effluents sur les ouvrages collectifs	
17 décembre 2003	Arrêté préfectoral de mise en demeure de se conformer aux dispositions des articles 4.4.2 et 4.4.3 de l'arrêté préfectoral du 18 avril 1995 soit l'aménagement d'un regard avant rejet des eaux dans « la Bionne » afin de permettre la mise en place d'un échantillonneur automatique ainsi que des consignes de rejets.	

2003	Changement des deux cuves simple enveloppe de 40 000 L datant de 1972 en deux cuves double-paroi de 10 000 L	
04 octobre 2004	Lettre de la préfecture du Loiret actant que le site satisfait à l'arrêté d'autorisation du 18 avril 1995 (faisant suite à un arrêté du 17 décembre 2003)	
2004 (Géoportail)		Démolition des préfabriqués Rive de Loire
31 décembre 2005 (ANTEA 2004)	Demande de cessation d'activité	
1 ^{er} janvier 2006 (Déclaration de cessation d'activité ; 3 mars 2006)	La Foncière des Régions continue d'exploiter le site et notamment les deux cuves à fuel de 10 m³ à l'est du bâtiment CT1 chacune et la société ELYO se charge de la maintenance du site en prestation de veille technique	
3 mars et 25 septembre 2006	Déclaration de cessation d'activité de la société IBM	
12 octobre 2006	Rapport de l'Inspecteur des Installations Classées de la Direction Régionale de l'Industrie, de la Recherche et de l'Environnement (DRIRE) concernant la visite du site suite à la déclaration de cessation d'activités. Aucune souillure n'a été constatée, ce qui a permis de classer le site IBM en classe 3 (site banalisable). Procès verbal de récolement de la DRIRE	
26 octobre 2006 (ANTEA 2004)	Arrêté préfectoral donnant acte à IBM de la cessation de ses activités	
30 octobre 2006	Demande de la Préfecture de procéder au dégagement de la tête de forage et au cadenassage de la plaque de forage avant cessation des activités.	
09 novembre 2006	Déclaration de cessation d'activités du site IBM à Saint-Jean-de-Braye suite aux demandes respectées de la Préfecture selon sa lettre du 30 octobre 2006	
2019	Démolition des bâtiments B1 et B2, CT2 et PVL ainsi que les parkings	

08/2020 (Géoportail)

Démolition des bâtiments B1 et B2, CT2 et PVL ainsi que les parkings

Ainsi, le site comprenait les bâtiments suivants :

- B1-B2: construit en 1966-1971, il a une surface de 29 118 m² et comprend 3 niveaux. Il servait
 de data center. Il comprenait un pont hydraulique et la plupart des stockages de produits
 polluants et chimiques s'y effectuaient au rez-de-jardin. Il comprenait également le local des
 batteries (B2) (5x600 KVA (10 ans)). Il fut désamianté entre 1995 et 1996.
- CT1: construit en 1966, il a une surface de 3147 m² et comprend 2 niveaux. Il servait de restaurant. Il comprenait des groupes froids, une installation de combustion (cuve de fuel double enveloppe enterrée de 10 m³, servant à l'alimentation de deux chaudières mixtes (gaz / fuel) du CT1) ainsi qu'un stockage d'hydrocarbures.
- CT2 : construit en 1971, il a une surface de 925 m² et comprend 3 niveaux. Il servait de centre technique. Il comprenait deux groupes froids, des groupes centrifuges, d'un séparateur d'hydrocarbures, un préleveur automatique, ...
- PVL: construit en 1986, il a une surface de 3515 m² et comprend 2 niveaux. Il servait de bureaux. Il comprenait un groupe froid.
- Rive de Loire : construit en 1984, il comprenait une activité de bureautique. Ce bâtiment contenait de l'amiante.
- Parking P8 comprenant un séparateur à hydrocarbures.

En 2004, la démolition du bâtiment Rive de Loire a lieu. En 2020, c'est au tour de celle des bâtiments B1 et B2, CT2 et PVL ainsi que les parkings.

L'exutoire des eaux pluviales était la Bionne et IBM disposait de 3 points de rejets dont 2 munis de séparateurs d'hydrocarbures (au niveau du bâtiment CT2 et du parking P8). Un échantillonneur automatique a été placé au niveau du point de rejet du CT2 pour réaliser un suivi qualitatif.

L'étude historique d'ANTEA de 2001 a montré que l'activité du site est restée similaire depuis 1966.

L'étude d'ANTEA de 2001 faisait état d'une zone susceptible d'avoir accueilli des dépôts avant l'implantation d'IBM au sud du bâtiment PVL, soit dans l'angle sud-est de la zone d'étude, aucun indice lors du forage n'a validé cette information sur la zone.

Anciens produits chimiques utilisés et modes de stockage associés

Les produits et substances présentes sur le site sont listées dans le tableau suivant.

Tableau 7. Description des stockages de produits

Localisation	Nature du stockage	Caractéristiques du stockage	Volume / surface	Nature du produits stockés	Etat actuel
	Cuve FOD (2002)	Enterrée, double paroi	2 x 10 m³ (2003) (Anciennement, les cuves faisaient 40 m³ depuis 1972)	Fuel	En place (état non connu)
CT1	Chaudière fioul / cuve d'huile de vidange	Aérienne	3 m³	Fuel	Démantelé
	Bac à graisses enterré ZR4	Enterré	5 m ³	Graisses	Non connu
	Cuve d'huiles (neuves et usées)	Simple enveloppe et sans bac de rétention (cuve aérienne, enlevée en 1990)	5 m³	Huiles	Démantelé
CT2	Fosse bétonnée de reprise des eaux usées et de l'huile de la cuve : rôle de séparateur d'hydrocarbures	Enterrée	5 m de profondeur	Eaux usées, huiles, HC	Démantelé
	Cuve aérienne (utilisée entre 1986 et 1990 puis démontée)	Aérienne, sur bac de rétention étanche	3 m³	Acide sulfurique 90%	Démantelé
	Groupe électrogène avec cuve située sur bac étanche	Sur bac étanche	3 m ³	НС	Démantelé

5.2 Plan de localisation des activités historiques et actuelles

La localisation des activités passées et actuelles est reportée sur la figure page suivante.

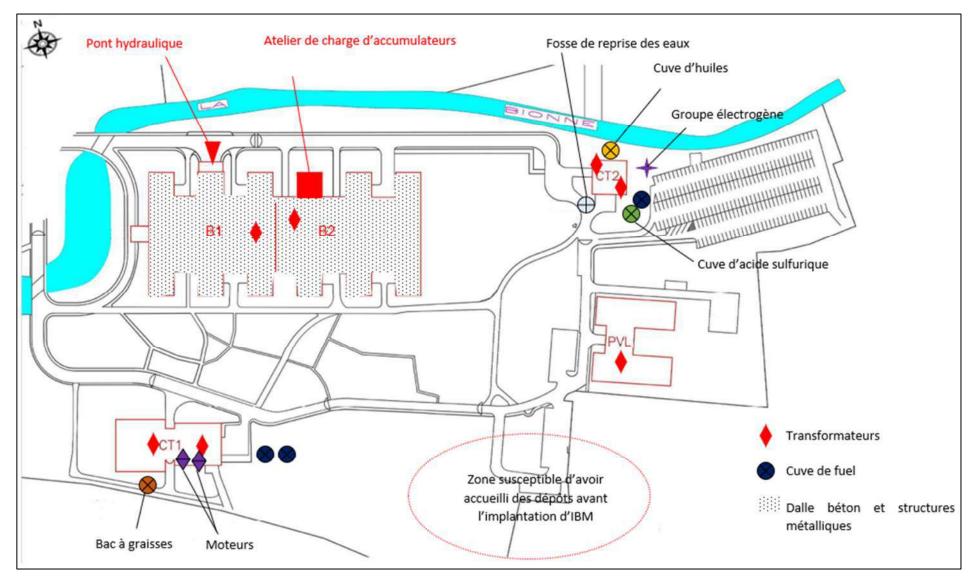


Figure 4 : Plan de localisations des activités exercées de 1966 à 2006

5.3 Incidents et accidents répertoriés

La base de données ARIA (qui recense les incidents ou accidents qui ont ou auraient, pu porter atteinte à la santé ou la sécurité publiques, l'agriculture, la nature ou l'environnement), n'a aucune référence d'accidents sur notre zone d'étude.

En revanche, il est à noter qu'à la suite d'une inspection de l'Inspecteur des Installations Classées (29/10/2033) et d'une demande de la DRIRE de décembre 2003, IBM a installé un échantillonneur automatique au niveau d'un point de rejet du bâtiment CT2 (avant rejet dans la Bionne) afin de réaliser un suivi qualitatif des eaux de rejet. De plus, la DRIRE mentionne qu'une convention de rejets devait être établie ente l'exploitant et l'organisme gestionnaire du réseau concernant le raccordement des effluents sur les ouvrages collectifs.

5.4 Limites et incertitudes de l'étude historique et documentaire

L'emplacement de certaines infrastructures passées n'ont pu être confirmées lors de la visite de site du fait de la démolition de 3 bâtiments sur 4. Ainsi, toutes les infrastructures des bâtiments B1 et B2, CT2 et PVL n'ont pas pu être vues et les informations les concernant se limitent aux données provenant des archives.

6 SYNTHESE DES ETUDES PRECEDENTES

Plusieurs études antérieures ont été réalisées au droit du site depuis 2011. Le tableau ci-dessous reprend les points majeurs des études associées aux remarques d'ENVISOL.

Une étude historique et documentaire avait été menée sur ce site par ANTEA en 2001.

Différentes installations avaient été identifiées sur le site, susceptibles d'avoir impacté le sous-sol :

- Stockages d'hydrocarbures enterrés ;
- Anciens transformateurs aux PCB;
- Fosse de reprise des eaux usées ;
- Zone de dépôt divers.

6 sondages ont été réalisés le 18 juin 2001 au droit des stockages d'hydrocarbures enterrés du bâtiment CT1 et CT2 (2 sondages), d'anciens emplacements de transformateurs à PCB du bâtiment B1 et d'un bâtiment hors zone d'étude (2 sondages), d'une fosse de reprise des eaux usées du bâtiment CT1 (1 sondage) et d'une zone potentielle de dépôts divers (ancienne décharge sauvage d'avant 1966) au sud du site. Il y a eu recherche des hydrocarbures totaux et PCB sur les échantillons analysés de ces sondages.

Ces investigations n'ont pas mis en évidence d'impact des sols, seul milieu investigué, ce qui a permis le classement du site en 3 au regard de l'ancienne Evaluation Simplifiée des Risques (ESR).

Aucune investigation sur les eaux souterraines n'a été réalisée.

Ces investigations sont présentées après le tableau suivant.

En 2004, l'étude de la phase 1 a conduit à ne pas recommander d'investigations complémentaires du fait de l'absence de nouvelles sources potentielles identifiées.

Tableau 8 : Synthèse des études précédentes.

BE/Référence rapport / BE	Année	Type de mission	Investigations réalisées	Conclusions / Résultats obtenus	Remarques ENVISOL
ANTEA / A23798/B « Diagnostic environnemental du site IBM à St-Jean-De-Braye (Loiret) »	2001	INFOS, DIAG	Etude historique et vulnérabilité: • 6 sondages à 6 m de profondeur (dont 1 en dehors de notre zone d'étude) • 16 échantillons analysés • Analyses : HC, PCB	Géologie : alluvions récentes et anciennes puis marne à partir de 3 m de profondeur Hydrogéologie : aquifère des calcaires de Beauce ; nappe libre. Niveau statique attendu vers 5 m et sens d'écoulement théorique orienté vers le sud-ouest Sols : absence de sources de pollution avérée (analyses conformes aux valeurs VDSS et VCI) Site classé en catégorie 3 (banalisable) au sens de l'Evaluation Simplifiée des Risques (ESR)	Absence d'analyses en COHV et métaux Absence d'investigations sur les eaux souterraines alors que niveau statique attendu vers 4 m
ANTEA / 34224/A « Evaluation environnementale (ASTM phase 1) »	Mai 2004	INFOS	Pas de nouvelles investigations proposées du fait de l'absence d'identification de nouvelles sources potentielle de pollution	ldem	/
ANTEA / 34736/A « Actualisation du dossier de demande d'autorisation d'exploiter des installations classées pour l'environnement »	Juillet 2004	INFOS	Pas de nouvelles investigations proposées du fait de l'absence d'identification de nouvelles sources potentielle de pollution	ldem	/
ANTEA / A 43344/A « Dossier de cessation d'activité »	Septembre 2006	INFOS	Pas de nouvelles investigations proposées du fait de l'absence d'identification de nouvelles sources potentielle de pollution	ldem	/

Synthèse de l'état des milieux

Les informations récoltées lors des diagnostics précédents permettent de dresser une première synthèse de l'état des milieux qui montre que le site IBM ne présente pas d'impacts en ce qui concerne les PCB, les hydrocarbures et les HAP.

L'ensemble des investigations antérieures ainsi que les impacts détectés sont présentés dans la figure ci-dessous.

Tableau 9. Synthèse des précédentes investigations et des impacts détectés.

Zone / Bâtiment	Echantillons	Paramètre analysé	Teneur
Est de CT1 - B	B (0-3 m)	Hydrocarbures totaux (mg/Kg)	<5
	B (3-6 m)	Hydrocarbures totaux (mg/Kg)	<5
Sud de CT1 - C	C (0-3 m)	Hydrocarbures totaux (mg/Kg)	26
	C (3-6 m)	Hydrocarbures totaux (mg/Kg)	5,5
	C (0-3 m)	PCB (Pyralène) (mg/Kg)	<0,01
	C (3-6 m)	PCB (Pyralène) (mg/Kg)	<0,01
Nord de B1 - D	D (0-3 m)	Hydrocarbures totaux (mg/Kg)	<5
	D (3-6 m)	Hydrocarbures totaux (mg/Kg)	<5
	D (0-3 m)	PCB (Pyralène) (mg/Kg)	<0,01
	D (3-6 m)	PCB (Pyralène) (mg/Kg)	<0,01
CT2 - E	E (0-3 m)	Hydrocarbures totaux (mg/Kg)	<5
	E (3-6 m)	Hydrocarbures totaux (mg/Kg)	<5
Sud de l'ancien bâtiment Rive de	F (0-3 m)	Hydrocarbures totaux (mg/Kg)	<5
Loire - F	F (3-6 m)	Hydrocarbures totaux (mg/Kg)	<5

A noter que le point A, présent au nord du site sur le plan, ne fait pas partie de la zone d'étude.

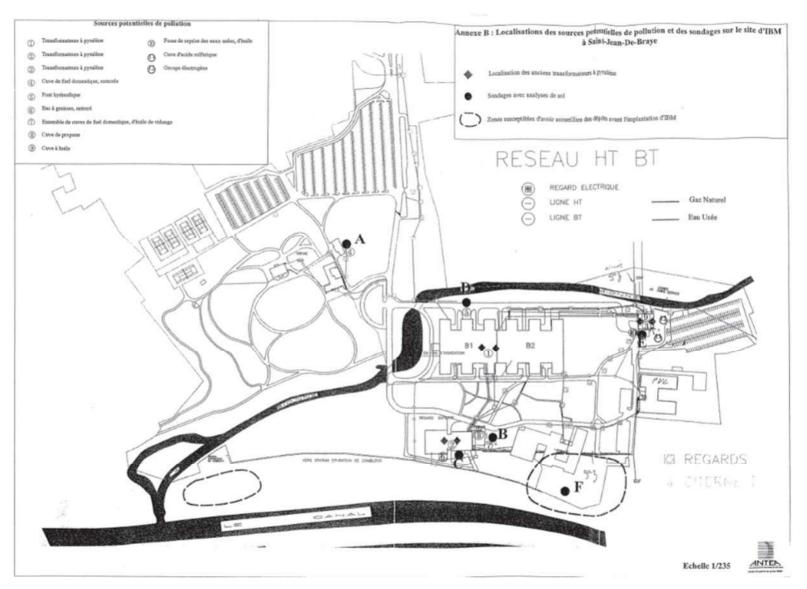


Figure 5. Localisation des sources potentielles de pollution et des sondages sur le site d'IBM à Saint Jean de Braye (Rapport d'ANTEA 2001)

7 ENVIRONNEMENT DU SITE - A120

7.1 Contexte météorologique

Le climat de la région est océanique dégradé, tempéré et humide. D'après les informations recueillies dans la fiche météorologique de météo France d'Orléans, la pluviométrie est d'environ 640 mm/an. Les vents soufflent majoritairement dans l'axe sud-ouest et nord-est.

7.2 Contexte topographique

Les profils altimétriques nord-sud et est-ouest du site issus de Géoportail sont présentés dans les figures ci-dessous.

Le site présente une topographie en pente ascendante du nord (96 m NGF) au sud (101,5 m NGF) et en pente descendante d'est (104 m NGF) en ouest (97 m NGF).

Figure 6 : Profils topographiques du site du nord au sud (gauche) et d'est en ouest (droite) (source Géoportail).

7.3 Contexte hydrologique

Le site d'étude est localisé à 250 m au nord de la Loire qui s'écoule du sud-est vers le nord-ouest. Le cours d'eau la Bionne se situe en bordure nord du site et se jette dans la Loire à 450 m au sud-ouest du site (affluent rive droite de la Loire). La Loire et La Bionne sont connectées aux eaux souterraines situées au droit du site.

Vers le sud-est du site, à 580 m et aux abords de la Loire, il existe la Réserve de l'écluse de Combleux qui est une réserve permanente de pêche et est une zone réglementée.

Un SAGE est en cours de mise en œuvre sur la commune de Combleux et s'intitule Nappe de Beauce et milieux aquatiques associés.

On recense 2 captages AEP à plus d'un kilomètre du site, localisé en amont latéral, et des usages de type pêche et base nautique à 100 m au sud du site.

7.4 Contexte géologique

La synthèse des connaissances géologiques et hydrogéologiques disponibles sur la zone d'étude a été réalisée à partir des documents suivants :

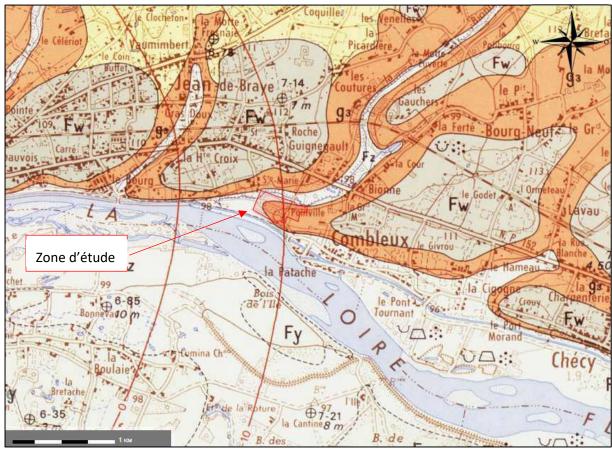
- → Carte géologique d'Orléans, au 1/50 000ème; ainsi que sa notice explicative,
- → Site Internet Infoterre du BRGM, recensant les captages déclarés et les ouvrages de la banque de données du sous-sol.

7.4.1 Contexte géologique régional

Cette région est située à la jonction de la Beauce, de la Forêt et du Val d'Orléans, au centre de la partie méridionale du Bassin parisien.

Le relief est assez peu accusé. A Orléans, la Loire s'écoule vers le sud et draine la nappe, dont le niveau d'étiage est à la cote de 90 mètres.

Au milieu de la Forêt d'Orléans, vers 140 m NGF, il existe une ligne de partage entre les bassins hydrographiques de la Loire et de la Seine.


L'Orléanais est principalement constitué de formations continentales oligo-miocènes reposant sur un substratum crétacé.

Le calcaire lacustre aquitanien affleure au nord-ouest et se recouvre, en plongeant vers le sud-est (Forêt d'Orléans) d'un manteau argilo-sableux burdigalien d'origine fluviatile. Les principaux dépôts alluviaux quaternaires occupent la vallée de la Loire et sa bordure.

7.4.2 Contexte géologique local

D'après la carte géologique, les terrains affleurant au droit du site sont les formations des Colluvions indifférenciés et des remblais anthropiques. Ces formations correspondent à des dépôts de pente et de colluvions de vallées remobilisant des altérites du Briovérien et du Cambrien. La carte géologique de la région est donnée dans la figure ci-dessous.

Fz Alluvions actuelles et subactuelles. Sables, limons, graviers et galets

Fy Alluvions récentes. Sables et cailloutis des "montilles"

Fw Alluvions anciennes, niveau de 17-20 m. Sables, graviers et galets

m1b Burdigalien. Sables et argiles de Sologne

m1a Burdigalien. Sables de l'Orléanais

g3 Aquitanien. Calcaire de Beauce

Figure 7 : Carte géologique au 1 :50 000 de la région de Combleux et sa légende

Des forages ont été réalisés au droit du site, correspondant au puits de forage du site IBM, jusqu'à 38 m de profondeur (forage BSS001AFDS). La lithologie mise en évidence est :

- → Alluvions modernes (sables et limons) et anciennes (graviers et galets) de 0 à 3,8 m
- → Marne de Blamont de 3,8 à 9,8 m
- → Calcaire de Pithiviers de 9,8 à 38 m puis molasse du Gâtinais et calcaires d'Etampes.

Profondeur	Formation	Lithologie	Lithologie	Stratigraphie	Altitude
109050			Sable to argifron, brossess		APPROVED C
1.50 —	Fy-z		Avglin saldense brus vordiline	Holocène	- 95.50
2.30 —	1 y-2		Angle sablouse brane et mulle	riolocerie	94.70
3.20 3.80		•••••	Argile limonouse à l'ace de mane blanche		- 93.80 - 93.20
2000			Calcaire Manc perma el mome gine		-0.5,000.00
6.00 —			Calculer manners gris		91.00
7.00		~~~~~	Manue grise à regnons culcaires		90.00
8.00 —	1020127 121 12W	~~~~	Mano calculo teigo		- 89.00
9.00 —	Calcaire de	· ~ ~ ~ ~ ~	Mano calcaire beige et nobales d'argle wele	-	- 88.00
9.80 —	Pithiviers		Calcate salcous gris, spongiesa, lossaldine		- 87.20
10.30	Pittilviers		Calcaire Bs, poreus, forsallifire	Aquitanien	86.70
12.00 -		0 0 0 0 0	Calcière orifférant gés, vacantière		85.00
13.00 —			Calcain tréchique à éléments noirs et cinnel beign		84.00
14.00 — 14.70 —			Calculus saliceus sané		- 83.00 - 82.30
2			Calculus brichique el manue blancher		14-11-15-15-15-15-15-15-15-15-15-15-15-15-
16.00	Molasse du		Calcaire manness gris		81.00
17.30	Gâtinais		Calcaire Infebigue et argle noire, bace de circulation		79.70
18.20 18.70			Calcule carif gris on blanc, trace de circulation, argile noire el sable (tursil)		- 78.80 - 78.30
20.20			Calcaire salicena gels, brêchique et zoné		76.80
20.80			Calcaire fin, gris, forcibline Manne grise à passales calcaires		76.20
21.00			Calcule silicous gits, spongines, firstillifee		76.00
22.80 — 23.50 —			Calcule silicens, gris lancii, colliliègue, spongiens		- 74.20 - 73.50
335000000			Calcaire silicons gits toxol of mame gitse		
24.60 25.00			Calcater Bo, gain is beinge, bentalwyne, spennylenn		- 72.40 72.00
26.00	Calcaire		Calcule Se silicess		- 71.00
27.20			Calcules silicous gris-clair, spengieux, zuni, fessilifiere	AD-0-1787	1000000
27.30 — 28.20 —	d'Etampes		Calcaire gits clair, brécliegue	Rupélien	- 69.70 - 68.80
29.00	(Calcaire du		Calcaire gris grossins, trace de cloalation		68.00
30.20			Calcaire rotuné, tréchique, outilisque, trace de meutière, très lamitéé		66.80 66.20
31,40	Gâtinais)		Calcaire el manos grise		65.60
32.00			Mame gris beige trace de calcaire Calcaire lis, gris, trace de circulation		65.00
32.50			Calcaire In, gins, l'ace de circulation Calcaire gis clair spongieux, l'ace de circulation		64.50
33.60 34.00			Calcule beige, salicens, poress		63.40
35.00			Manu marik:		62.00
35.30			Calcaire coverness Calcaire Manc à Bosanes calcilloses		61.70
35.60			Calcaire Blanc à bissaires calcitices Calcaire Blancidille à conspillen de calcille Calcaire gris critme cavenness à concritions de calcille		61.40
36.00 — 36.50 —			Calcare cannous tréchique		- 61.00 - 60.50
37.00			Calcaire gits, cavement, bissillère		60.00
38.00		The state of the s	Calcales spongiesa, cammena à concritions de calcile		59.00

Figure 8 : Coupe géologique du forage BSS001AFDS.

7.5 Contexte hydrogéologique

7.5.1 Contexte régional

La nappe la plus superficielle au droit du site est celle des calcaires de Pithiviers et de l'Orléanais de l'Aquitanien (Miocène inf.) du Bassin Parisien, située sur le secteur de la Beauce et du Val d'Orléans (bassin Loire-Bretagne).

Ces calcaires de Pithiviers et de l'Orléanais correspondent à la partie supérieure des calcaires de Beauce. Elle s'étend entre les bassins de la Seine et de la Loire, sur l'ensemble du territoire géographique de la Beauce. Elle prend également place au Sud de la Loire, où elle s'étend sous couverture des formations sableuses et argileuses de Sologne.

Les calcaires sont fortement fissurés, ce qui est accentué par une karstification d'autant plus accrue que l'on se rapproche de la Loire. On appelle la nappe d'eau souterraine contenue dans le complexe des calcaires de Pithiviers et des calcaires Etampes « nappe de Beauce ».

Cette nappe est libre sur l'ensemble du plateau, sauf sous la forêt d'Orléans et au sud de la Loire.

Au nord de la Loire, la nappe de Beauce joue un rôle majeur dans l'alimentation des cours d'eau situés en bordure du plateau. Ainsi, les fluctuations du niveau de la nappe des calcaires sont directement liées à celles du niveau (ou débit) de la Loire au sein du Val d'Orléans.

La nappe s'écoule soit vers le bassin de la Seine soit vers celui de la Loire. La crête piézométrique se situe approximativement au nord de la forêt d'Orléans et remonte très au Nord.

La nappe de Beauce est intensément exploitée par plus de 4 000 forages, à très forte majorité agricole. Lorsque les débits se révèlent insuffisants dans le réservoir des Calcaires de Pithiviers/Orléanais, ils descendent jusqu'aux réservoirs sous-jacents (Calcaires d'Etampes, ou de la craie en bordure du bassin).

La vulnérabilité est très forte au nord de la Loire (sauf sous la forêt d'Orléans) et faible au Sud de la Loire.

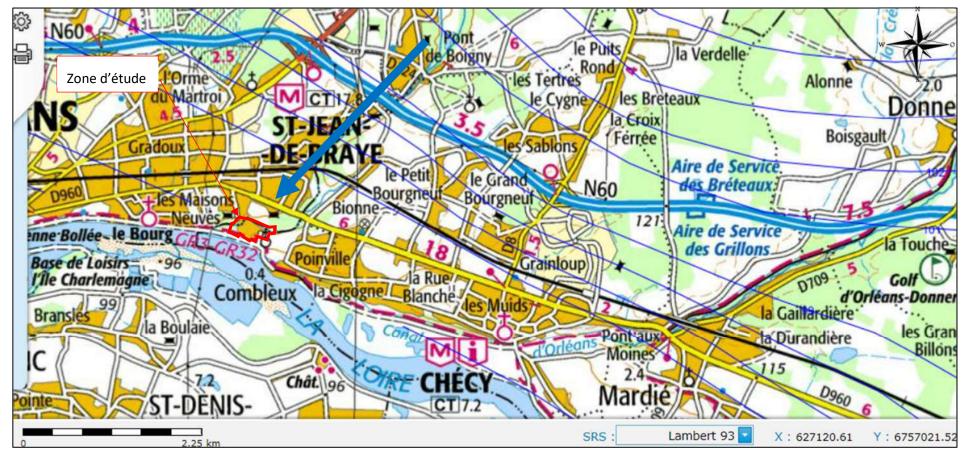


Figure 9 : Extrait de la carte hydrogéologique d'Orléans (SIGES) (la flèche bleue représente le sens d'écoulement des eaux de la nappe de la Beauce).

7.5.2 Contexte local

On distingue au droit du site deux aquifères :

- Celui des alluvions de la Bionne, dont la nappe est libre, peu puissante et très peu exploitée ;
- Celui des calcaires de Beauce, dont la nappe est libre et drainée par la Loire, elle est rencontrée à partir de 3,2 m de profondeur et son sens découlement dirigé vers le sud-ouest. Cet aquifère est bien plus sollicité par des forages agricoles, industriels et AEP des collectivités.

La perméabilité élevée des formations géologiques rencontrées au droit du site induit une vulnérabilité face à une pollution éventuelle du sol et de l'eau souterraine. Cette vulnérabilité est d'autant plus accrue que la nappe est proche (entre 3 et 4 m environ).

7.5.3 Usage des eaux souterraines

Points d'eau

D'après les informations recueillies auprès de la Banque de Données du Sous-sol (site Internet Infoterre du BRGM), plusieurs points d'eau (58) sont recensés dans un rayon de 1 km autour du site, dont un au droit du site d'étude (BSS001AFDR) qui est un puits de 10,4 m de profondeur (usage non précisé). Cependant, du fait de la proximité du site avec les deux cours d'eau (Loire et Bionne), aucun point d'eau ne se situe en aval hydrogéologique du site ni même en relation hydraulique.

Ces points d'eau correspondent essentiellement à des puits dont l'usage est agricole ou domestique (ex : pompe à chaleur).

 ${\it Tableau~10. Description~des~ouvrages~se~situant~dans~un~rayon~de~1~km~autour~du~site.}$

Référence	Commun e	Nature	Profondeur de l'ouvrage (m)	X Lambert IIE	Y Lambert IIE	Etat de l'ouvrage	Utilisation	Profondeur de la nappe (m)	Distance (m)	Orientation par rapport au site	Position hydraulique
03636X0031/F	45284	FORAGE	24.90	572875	2322975				642,0	Ouest	Latéral
03636X0405/P	45284	PUITS	13.50	573035	2323675	REBOUCHE. NON-			1018,8	Nord-Ouest	Latéral
03636X0419/P	45284	PUITS	5.50	573035	2323310	EXPLOITE, MESURE.			708,5	Nord-Ouest	Latéral
03636X0479/P	45284	PUITS	6.85	572805	2323135	MESURE.	EAU-		772,4	Nord-Ouest	Latéral
03636X0809/F	45284	FORAGE	31.00	572660	2322865	EXPLOITE, MESURE.	ASPERSI ON EAU-		826,2	Ouest	Latéral
03637X0014/PF	45284	PUITS	26.00	573555	2323690	ACCES,EXPLOITE,MESU RE,PAROI-	ASPERSI	14.3	935,0	Nord	Amont
03637X0052/P	45284	PUITS	15.00	573580	2323310	NON-	7101 21101		561,0	Nord	Amont
03637X0051/P	45284	PUITS	13.00	573280	2322930	EXPLOITE MESURE			263,2	Nord-Ouest	Latéral
03637X0053/P	45284	PUITS	8.00	574130	2323160	EXPLOITE MESURE			764,8	Nord-Est	Amont
03637X0055/P	45284	PUITS	15.00	573990	2323320	PAROI-PIERRE,NON-			759,3	Nord-Est	Amont
03637X0125/P	45284	PUITS	16.50	573120	2323360	EXPLOITE, MESURE.			701,0	Nord-Ouest	Latéral
03637X0125/P	45284	PUITS	8.80	574070	2323300	EXPLOITE MESURE			701,0	Nord-Est	Amont
03637X0142/J	45100	STATION-	0.00	573690	2322775	EXPLOITE MESLIRE			211,4	Est	Amont
03637X0162/P	45284	PUITS	16.90	573180	2323560	MESURE.			855,9	Nord	Latéral
03637X0164/P	45284	PUITS	15.75	573300	2323250	NON-			523,5	Nord	Latéral
03637X0165/P2	45284	PUITS	9.00	573320	2322900	MESURE.			213,3	Nord-Ouest	Latéral
03637X0167/F	45100	FORAGE	38.50	573700	2322760	ACCES,EXPLOITE,MESU RE,POMPE,PRELEV,TUB	EAU- INDUSTRI	3	220,7	Est	Amont
03637X0184/P	45284	PUITS	12.50	573110	2323390	PUISARD,EXPLOITE.			731,9	Nord-Ouest	Latéral
03637X0185/F	45284	FORAGE	23.20	573630	2323050	ACCES,EXPLOITE,MESU	EAU-	14.6	328,5	Nord-Est	Amont
03637X0244/S	45284	SONDAGE	20.00	573425	2322860	RE,POMPE,PRELEV,TUB	ASPERSI PIEU.		115,4	Nord-Ouest	Latéral
03637X0244/S 03637X0248/F	45284	FORAGE	30.00	573425	2323650		1 120.		965,3	Nord	Latéral
03637X0261/F	45089	FORAGE	20.00	574350	2322965	TUBE- METAL,MESURE,EXPLOI			895,0	Est	Amont
03637X0264/S	45284	SONDAGE	4.50	573500	2323600	REBOUCHE.		3.7	842,1	Nord	Amont
03637X0281/VT307	45284	SONDAGE	80.00	573554	2323689	REBOUCHE.			933,9	Nord	Amont
03637X0296/F	45284	FORAGE	20.00	573760	2323025	ACCES,MESURE,EXPLOI	EAU-		387,3	Nord-Est	Amont
03637X0365/F	45284	FORAGE	18.15	573960	2323140	MESURE,EXPLOITE.			613,9	Nord-Est	Amont
03637X0396/F	45284	FORAGE	29.00	573465	2323130	TUBE- PLASTIQUE,EXPLOITE,M	EAU-		372,2	Nord	Latéral
03637X0407/F	45284	FORAGE	21.20	573525	2322875	TUBE- PLASTIQUE,MESURE,EX	EAU- ASPERSI		125,5	Nord	Amont
03637X0411/F	45284	FORAGE	21.10	573530	2322870	TUBE- PLASTIQUE,MESURE,EX	EAU- ASPERSI		122,8	Nord-Est	Amont
03637X0422/F	45284	FORAGE	27.20	573710	2323460	EXPLOITE, MESURE, TUB E-PLASTIQUE.	EAU- ASPERSI		738,8	Nord	Amont
03637X0430/FPAC	45089	FORAGE	19.00	574459	2322979	TUBE- PLASTIQUE,MESURE,EX		4.9	1004,3	Est	Amont
03637X0436/F	45284	FORAGE	24.40	574035	2323390	MESURE,EXPLOITE,TUB E-PLASTIQUE.	ASPERSI		841,5	Nord-Est	Amont
03637X0454/PF2PAC	45089	FORAGE	18.00	574443	2322998	PAROI- PIERRE,MESURE,EXPLO	AQUIFER E,POMPE-		993,1	Est	Amont
03637X0488/F1PAC	45100	FORAGE	27.00	574491	2322718	EXPLOITE, CREPINE.	PUMPE-A- PUMPELR-	17	1012,5	Est	Latéral
03637X0489/F2PAC	45100	FORAGE	28.00	574487	2322705	EXPLOITE, CREPINE.	FUMPE-A-	17	1009,1	Est	Latéral
03637X0492/F1PAC	45284	FORAGE	82.00	573235	2323630	EXPLOITE.	CHONNELLE CHONNELLE	16.8	905,5	Nord	Latéral
03637X0493/F2PAC	45284	FORAGE	83.00	573187	2323470	EXPLOITE.	CENTHER.	16.82	769,5	Nord	Latéral
03637X0495/F	45100	FORAGE	29.00	574467	2322723	PRELEV,EXPLOITE.	CRAGREA	16.6	988,4	Est	Latéral
03637X0503/F1PAC 03637X0504/F	45089 45089	FORAGE FORAGE	18.70	574407 574429	2323003 2322983	EXPLOITE. ACCES,EXPLOITE.	£ÆU-	4.1 3	959,6 976,1	Est	Amont
BSS004EECJ/X	45089	FORAGE	18.00	573290	2322983	ACOLO,EXPLOITE.	DOMESTI	3	874,4	Est Nord	Amont Latéral
03637X0008/P204	45100	PUITS	16.00	574260	2322180	PAROI-NUE,MESURE.			971,5	Sud-Est	Latéral
03637X0038/P	45100	PUITS	17.15	574330	2322580	EXPLOITE, MESURE, PAR OI-PIERRE.			869,2	Est	Latéral
03637X0056/P	45100	PUITS	14.00	573920	2322550	EXPLOITE, MESURE.	DOMESTI EAU-		487,4	Sud-Est	Latéral
03637X0057/P	45100	PUITS		573740	2322230	MESURE.	TORAL STI		589,0	Sud-Est	Latéral
03637X0058/P	45100	PUITS	7.50	574120	2322250	NUN- EYDI OITE MESLIDE			817,8	Sud-Est	Latéral
03637X0158/PF	45284	SONDAGE	25.00	573775	2322500				392,5	Sud-Est	Latéral
03637X0161/P	45100	PUITS	8.25	574260	2322170	EXPLOITE, MESURE.	DOMESTI		977,5	Sud-Est	Latéral
03637X0166/P	45100	PUITS	10.40	573600	2322625	PAROI-PIERRE.		10.12	179,7	Sud-Est	Latéral
03637X0312/F	45100	FORAGE		574050	2322200	EXPLOITE, ACCES, MESU	CHAIFEIR-		798,3	Sud-Est	Latéral
03637X0313/F	45100	FORAGE	40.00	574175	2322500	RE	CHEYE'IB		742,1	Est	Latéral
03637X0363/PF 03637X0457/F1	45100 45100	FORAGE	19.20 21.10	573925 573642	2322140 2322495	MESURE,EXPLOITE. MESURE,EXPLOITE,TUB	ASPERSI EAU-		762,1 309,4	Sud-Est Sud-Est	Latéral Latéral
03637X0458/F2	45100	FORAGE	18.13	573637	2322488	E-PLASTIQUE. MESURE,EXPLOITE,TUB	ASPERSI EAU-		312,8	Sud-Est	Latéral
03637X0476/FPAC	45100	FORAGE	27.00	573635	2322494	E-PLASTIQUE. EXPLOITE, TUBE-	ASPERSI POMPE-A-		306,9	Sud-Est	Latéral
03637X0485/F	45100	FORAGE	20.00	574278	2322321	PLASTIQUE, TUBE- TUBE-METAL, TUBE-	EAU-	9.8	910,5	Sud-Est	Latéral
03637X0512/F	45100	FORAGE	20.00	574309	2322379	PLASTIQUE,NON- ACCES,EXPLOITE,TUBE-	ASPERSI EAU-	9.8	912,3	Sud-Est	Latéral
03636X0239/P	45274	PUITS	5.10	572860	2322180	METAL, TUBE- ACCES, EXPLOITE, MESU	ASPERSI EAU-	4.5	847,2	Sud-Ouest	Ature BV
			l .		<u> </u>	RE,PAROI-	ASPERSI		<u> </u>	l .	

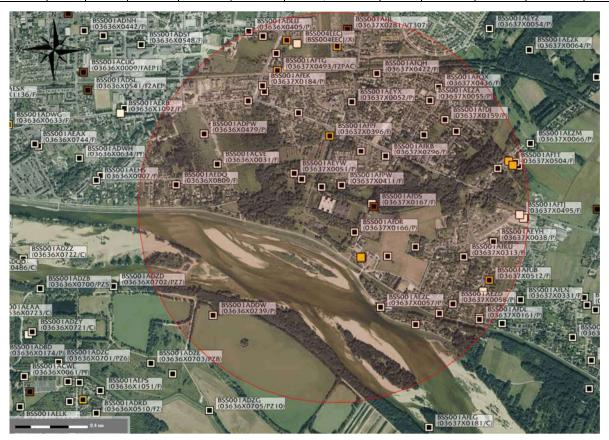


Figure 10. Localisation des ouvrages recensés au voisinage du site (1 km)

Etude historique et documentaire et diagnostic de pollution des sols

Captages AEP:

Selon la base de données de l'ARS centre Val de Loire, aucun ouvrage AEP n'est recensé sur la commune de Combleux et utilisé dans les environs immédiats ou au droit du site. Le premier périmètre de captage est situé à 1,4 km au nord-est du site (amont latéral hydrogéologique) et l'autre est situé à équidistance du site mais cette fois-ci vers le nord-ouest en position latérale hydraulique.

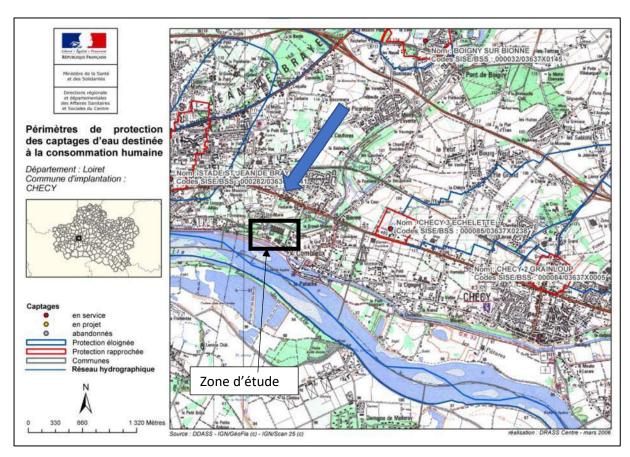


Figure 11. Localisation des captages d'eau potable en proximité du site d'étude et des périmètres de protection associés (site en orange et sens d'écoulement en bleu).

7.6 Sites inscrits et espaces naturels remarquables

D'après les informations recueillies sur le site du ministère du développement durable, le site ne se situe pas sur une zone naturelle remarquable.

Il se situe néanmoins à moins de 100 m au nord d'une ZNIEFF de type I et II ainsi que de sites Natura 2000 (directive habitat et oiseaux), toutes ces zones sont situées au niveau de la Loire (figure cidessous). Ces zones sont donc considérées comme vulnérables au regard de leur distance avec le site.

Figure 12: Localisation des espaces naturels remarquables (ZNIEFF type I).

Figure 13. Localisation des espaces naturels remarquables (ZNIEFF type II).

Figure 14. Localisation des espaces naturels remarquables (sites Natura 2000 – Directive Oiseaux).

Figure 15. Localisation des espaces naturels remarquables (sites Natura 2000 – Directive Habitats).

7.7 Vulnérabilité et sensibilité des eaux souterraines et superficielles

Le tableau suivant présente la vulnérabilité et la sensibilité des milieux. Elles sont appréciées selon les éléments réunis lors des contextes et sont classifiées de la manière suivante : nulle, moyenne et forte.

Tableau 11 : Synthèse sur la vulnérabilité des milieux et la sensibilité des usages.

Milieu	Vulnérabilité du milieu	Sensibilité des usages à proximité du site
Eaux de surface	Forte : En bordure de site (Loire et Bionne)	Forte : réserve de pêche en aval hydraulique
Eaux souterraines	Forte : nappe à environ 3 m de profondeur Sol perméable, nappe naturellement peu protégée	FAIBLE : absence d'usages sensibles en aval hydrogéologique. A noter l'existence d'un captage de type puits au droit du site mais celui-ci n'est pas utilisé

7.8 Contexte industriel

Dans le cadre de l'étude, ENVISOL a effectué un recensement des sites ICPE, CASIAS et SIS dans un rayon de 1000 m autour du site (tableau et figure ci-dessous).

A proximité de la zone d'étude et en amont hydraulique proche, deux sites BASIAS ont été recensés dont un garage automobile et une station-service au nord-est. On ne peut donc pas écarter le risque d'un éventuel transfert de pollution.

D'après la base de données BASIAS, il existe une erreur dans la localisation du site CEN4501340, correspondant à une station d'épuration de la CCAO. Le site BASIAS est localisé sur l'ancien site IBM, or sa véritable localisation serait plutôt située à 500 m à l'est par rapport au point enregistré.

Tableau 12 : Synthèse des sites industriels dans un rayon de 1000 mètres autour du site.

Référence	Raison sociale	Adresse	Activités	Distance au site, direction et position hydraulique	État
CEN4501340	CCAO	Combleux	Station d'épuration	Localisé au droit du site mais erreur de la base de données BASIAS. Réellement localisé 500 m à l'est (en latéral hydraulique)	En activité
CEN4502400	Station-service (inconnue)	Saint -Jean-de- Braye (45284)	Commerce de gros, de détail, de desserte de carburants en magasin spécialisé (station-service de toute capacité de stockage)	350 m en amont hydraulique (nord-est)	Activité terminée

Référence	Raison sociale	Adresse	Activités	Distance au site, direction et position hydraulique	État
CEN4501340	CCAO	Combleux	Station d'épuration	Localisé au droit du site mais erreur de la base de données BASIAS. Réellement localisé 500 m à l'est (en latéral hydraulique)	En activité
CEN4500959	VILLEMONT (Ets)	Saint -Jean-de- Braye (45284)	Garages, ateliers, mécanique et soudure Carrosserie, atelier d'application de peinture sur métaux, PVC, résines, plastiques (toutes pièces de carénage, internes ou externes, pour véhicules)	316 m en amont hydraulique (nord-est)	Activité terminée
CEN4502052	GRANGER et Cie	Saint -Jean-de- Braye (45284)	Fabrication de coutellerie	930 m en position latérale hydraulique (nord-ouest)	Activité terminée
CEN4502053	Garage Molveau, ex/LAVEAULT Serge	Saint -Jean-de- Braye (45284)	Fabrication de coutellerie	880 m en position latérale hydraulique (nord-ouest)	En activité
CEN4502142	PASSEGUE Roger	Saint -Jean-de- Braye (45284)	Fabrication de savons, de produits d'entretien et de parfums	800 m en latéral hydraulique (nord- ouest)	Activité terminée
CEN4500150	LILLE BORNIERES et COLOMBES (Sté)	Saint -Jean-de- Braye (45284)	Dépôt de liquides inflammables (D.L.I.)	700 m en amont latéral hydraulique (nord)	Activité terminée
CEN4502049	RACAUD (Ets)	Saint -Jean-de- Braye (45284)	Mécanique industrielle	820 m en amont latéral hydraulique (nord)	En activité
CEN4501373	JUPITER (Sté des Pétroles)	Saint -Jean-de- Braye (45284)	Dépôt de liquides inflammables (D.L.I.)	820 m en amont latéral hydraulique (nord)	Activité terminée
CEN4501110	Restaurant "La Marine"	Saint -Jean-de- Braye (45284)	Dépôt de liquides inflammables (D.L.I.)	565 m vers le sud-est Latéral hydraulique	Activité terminée

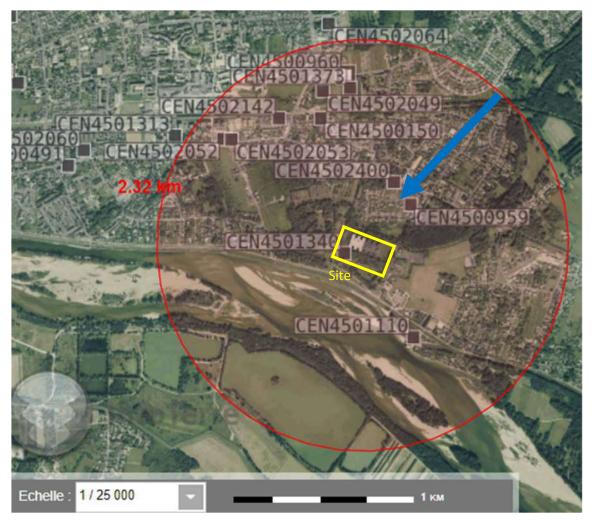


Figure 16 : Localisation des sites ICPE/BASIAS/SIS/ex-BASOL (flèche bleue = sens d'écoulement des eaux souterraines).

7.9 Limites - incertitudes de l'étude du contexte environnemental

En l'absence d'investigations menées à ce stade de l'étude, des incertitudes demeurent sur la définition des contextes géologique et hydrogéologique à l'échelle locale (du site) et notamment sur la présence de remblais (nature, origine et épaisseur), la profondeur et les écoulements de la nappe (nappe peu profonde dont la circulation peut être influencée par le contexte du site : présence d'une rivière en bordure nord du site et rivière à 100 m au sud). Les investigations proposées auront pour objectif de lever ces incertitudes sur les sols ; en cas d'impact sur les sols, des investigations sur les eaux souterraines permettront de préciser le milieux.

De plus, un site BASIAS (activité de station d'épuration), référencé au droit du site, fait l'objet d'une erreur de géolocalisation dans la base de données BASIAS : sa localisation exacte se situe à 500 m à l'est du site.

8 IDENTIFICATION DES ZONES POTENTIELLEMENT POLLUEES

19 zones potentiellement polluées ont été définies sur la base des informations récoltées (tableau et figure ci-dessous). Ces zones ont accueilli des activités ou installations potentiellement polluantes. Leur configuration (enterrée ou pas, dimensions etc...) permettra un dimensionnement des investigations à réaliser. Par ailleurs, sur la base des informations historiques, de notre retour d'expérience et de la matrice activités/polluants établie par BRGM, des polluants potentiellement traceurs d'une pollution ont été définis.

Tableau 13 : Zones potentiellement polluées.

Zone potentiellement polluée	Description de la zone à risques	Profondeur et surface / dimensions	Justification de la zone potentiellement polluée	Traceurs				
	2 transformateurs anciens PCB (TR1 et TR2)		Installations ayant pu fuir ou déborder Démontés en 1992, pourvus d'un bac de rétention et situé dans un local aménagé	HC C10-C40 / HAP / PCB				
B1 et B2	Pont hydraulique et son bac de rétention	-	Bac situé au même niveau que la Bionne, bac bétonné, quelques fuites en 30 ans	HC10-C40 / HAP / métaux				
	Atelier de charge pour accumulateur (rez de jardin du B2) avec deux jeux de 200 batteries	' -	Installations ayant pu fuir ou déborder	Métaux / pH				
CT1	1 cuve double-paroi FOD (2002) alimentant 2 groupes électrogènes et des 2 chaudières mixtes (Changement des cuves en 2003 simple enveloppe datant de 1972) (Ces cuves ont conservé leur niveau d'usage dès le 1 ^{er} janvier 2006 pour les besoins de la Foncière des Régions)	2 x 10 m³ (2003) (Anciennement, les cuves faisaient 40 m³ depuis 1972)	Installations ayant pu fuir ou déborder	HC C10-C40 /HAP/ BTEX				
	Chaudière fioul / cuve d'huile de vidange	3 m³	Installation ayant pu fuir ou	HC C10-C40 / HAP / BTEX				
	Bac à graisses enterré ZR4	5 m³	déborder	HC C10-C40 / Métaux HAP / HC C10-C40				

Zone potentiellement polluée	Description de la zone à risques	Profondeur et surface / dimensions	Justification de la zone potentiellement polluée	Traceurs
	2 transformateurs anciens PCB (TR5 et TR6)	-	Installation ayant pu fuir ou déborder Démontés en 1992, pourvus d'un bac de rétention et situé dans un local aménagé	HC C10-C40 / HAP / PCB
	Cuve d'huiles (neuves et usées) simple enveloppe et sans bac de rétention (cuve aérienne, enlevée en 1990)	5 m³	Installation ayant pu fuir ou	HC10-C40/ HAP / BTEX
	Fosse bétonnée de reprise des eaux usées et de l'huile de la cuve : rôle de séparateur d'hydrocarbures	5 m de profondeur	déborder	HC10-C40/ HAP métaux / BTEX
СТ2	2 transformateurs anciens PCB (TR4 et TR11)	-	Installation ayant pu fuir ou déborder Démontés en 1992, pourvus d'un bac de rétention et situé dans un local aménagé au 1 ^{er} étage	HC C10-C40 / HAP / PCB
	Cuve aérienne avec bac de rétention étanche à acide sulfurique 90%, utilisée entre 1986 et 1990 puis démontée	3 m³	Installation ayant pu fuir ou déborder	pH (acide)
	Groupe électrogène avec cuve située sur bac étanche	3 m ³	Installation ayant pu fuir ou déborder	HC C10-C40 / BTEX / HAP / métaux
Bâtiment PVL	1 transformateur ancien PCB (TR9)	-	Installation ayant pu fuir ou déborder	HC C10-C40 / HAP / PCB
Parking employés	Parking	-	Installation ayant pu connaitre des souillures ou fuites	HC5-C10 / HC10-C40 BTEX / métaux
Parking visiteurs	Parking	-	Installation ayant pu connaitre des souillures ou fuites	HC5-C10 / HC10-C40 BTEX / HAP / métaux
Enfouissement de déchets	Ancienne zone d'enfouissement de déchets (décharge sauvage) Sud de l'ancien bâtiment Rive de Loire	-1	Déchets	HC5-C10 / HC10-C40 / BTEX / Métaux /HAP / COHV

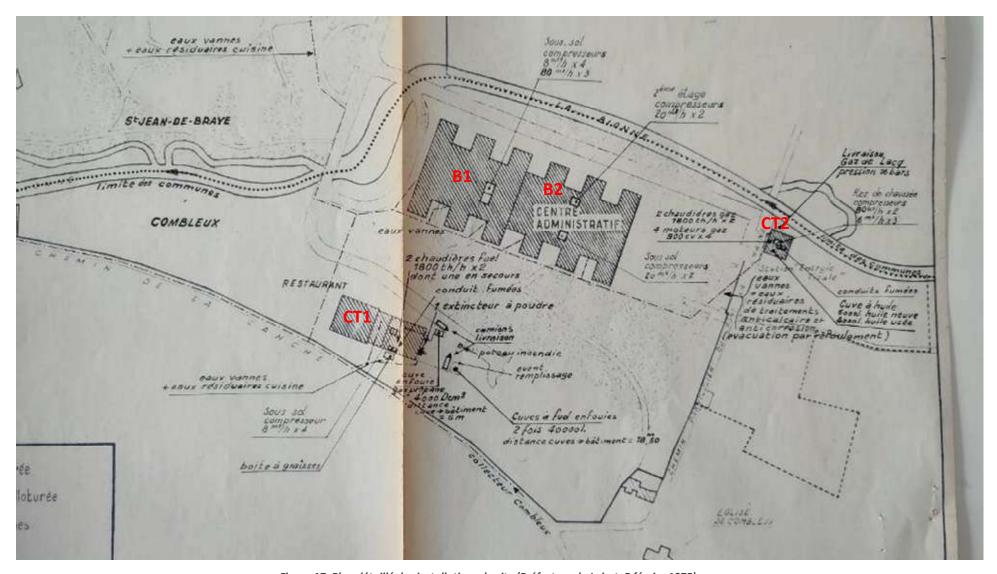


Figure 17. Plan détaillé des installations du site (Préfecture du Loiret, 5 février 1975)

Tous les transformateurs contenant des PCB ont été remplacés par des transformateurs secs en 1992 et démantelés en 2010.

Les aires de dépotage des stockages d'hydrocarbures ne sont pas aménagées et ne permettraient pas, en cas de fuite lors d'une livraison, de collecter les hydrocarbures d'après le rapport d'ANTEA de 2004.

En 2001, le résultat des sondages réalisés n'a pas montré de résultats anormaux.

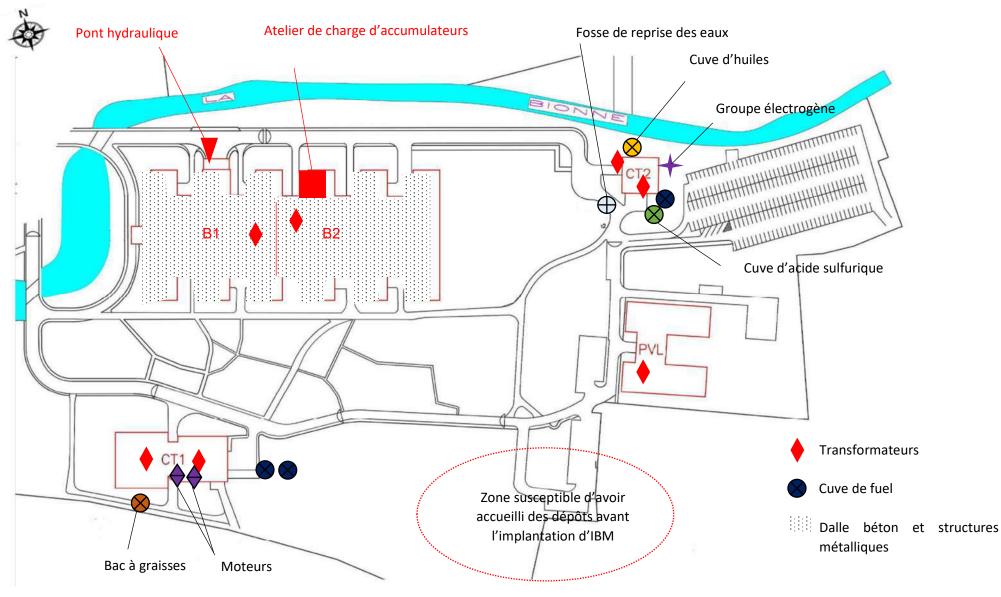


Figure 18 : Localisation des zones potentiellement polluées

9 PROGRAMME DE RECONNAISSANCES - A130

On rappelle ici que l'objectif de cette étude est de définir l'état du site, en intégrant les données déjà acquises et en les complétant par de nouvelles investigations sur les milieux.

Ces investigations visent à :

- → Identifier et/ou caractériser les sources potentielles de pollution ;
- → Caractériser un ou plusieurs vecteurs de transfert ;
- → Caractériser les milieux d'exposition d'une population (travailleurs, riverains, population générale).

Au regard des zones potentiellement polluées identifiées, il est nécessaire de caractériser les milieux sol et gaz du sol. En cas d'impact sur les sols, des investigations sur les eaux seront dans un second temps.

Les tableaux et la figure suivante présentent le programme de reconnaissances conçu.

Milieu Profondeur des **Programme** Zone visée Total ml Sondage investigué investigations (m) analytique Anciens S1 à S7 2 14 transformateurs Anciennes cuves FOD S8 à S10 5 15 bâtiment CT1 Chaudière fioul S11 2 bâtiment CT1 Cuve à huiles bâtiment S12 et S13 5 10 1,5 analyse par CT2 sondage: Bac à graisse bâtiment S14 3 3 Sol 28 Packs ISDI + 8 métaux sur brut + Fosse de reprise des COHV + C5-C10 3 3 S15 eaux usées S16 Parking employés 2 2 S17 Parking visiteurs 2 Ancienne zone MLS18 et S19 4 8 d'enfouissement de déchets

Tableau 14. Tableau des investigations prévisionnelles sur les sols

Le programme analytique a privilégié les ISDI, en effet, en cas de pollution ou en cas de gestion de remblais, ces analyses permettent de préciser les filières d'élimination notamment.

Tableau 15. Tableau des investigations prévisionnelles des gaz du sol

Milieu investigué	Ouvrages	Zone visée	Profondeur des investigations (m)	Total ml	Programme analytique
Air du sol	4 piézairs	Equipement de sondages en intérieur en fonction des constats établis et du projet d'aménagement	1,5	6	1 analyse par ouvrage : HC volatils, BTEX, naphtalène et COHV

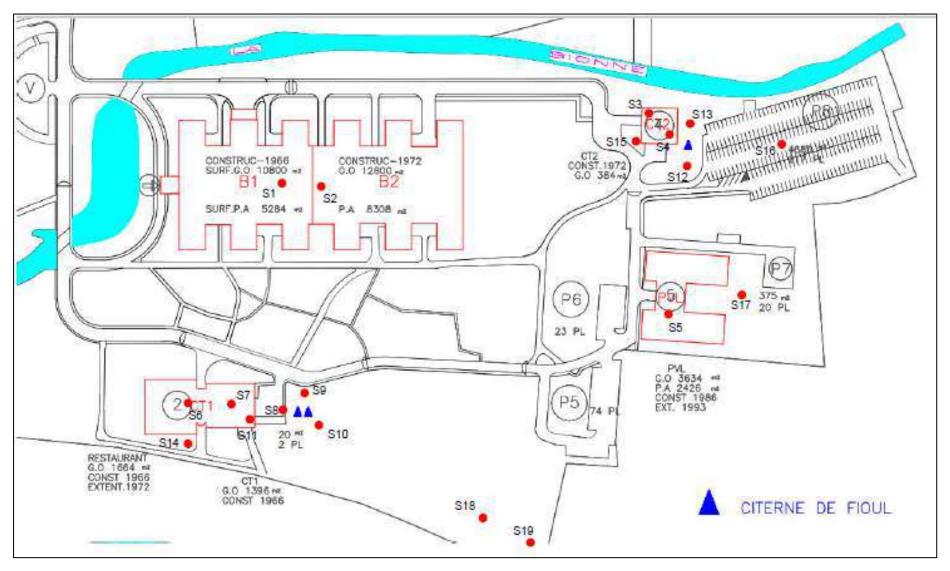


Figure 19 : Localisation des investigations sols prévisionnelles.

10 DIAGNOSTIC DE QUALITE DES MILIEUX

10.1 Hygiène, sécurité et environnement

Le tableau suivant présente les éléments relatifs à l'hygiène, la sécurité et l'environnement de l'intervention.

Tableau 16 : éléments relatifs à l'hygiène, la sécurité et l'environnement de l'intervention

Point traité QSE / Risque	Risques identifiés	Parades / Mode de gestion		
Site	Coactivité opérateur et employés	Le site n'est plus en activité; toutefois les cuves de fuel du bâtiment CT1 sont toujours exploitées par la Foncière des Régions et la société ELYO se charge de la maintenance du site en prestation de veille technique. Ainsi, plus personne n'est sur le site. Cependant, la semaine de l'intervention pour réaliser les sondages, une association allait utiliser le bâtiment CT1 et une entreprise de débroussaillage était présents le premier jour afin de tout remettre en état (le 07/06/2022). La coactitivté a été gérée dans le cadre de ce chantier		
Réseaux enterrés	Détérioration Destruction Risque pour le(s) opérateur(s)	Préalablement à l'intervention sur site, il a été procédé aux Déclarations d'Intention de Commencement de travaux (DICT). Il a été demandé au client de communiquer à ENVISOL, au démarrage de la mission, les plans des réseaux enterrés (gaz, électricité, eaux) présents sur le site. Aucun plan des réseaux n'a été communiqué par le client. L'intervention sur site a été précédée par la matérialisation des réseaux au droit et à proximité des points de sondages. Aussi, un détecteur de réseau a été utilisé par ENVISOL lors de ces opérations.		
Substances	Exposition des opérateurs aux HCT, COHV.	Le personnel intervenant sur le site disposait de l'équipement de sécurité adéquat pour ce type d'intervention, soit : Des Équipements de Protection Individuel (EPI) : chaussures de sécurité, gants en nitrile, casque, combinaison de protection, lunettes, casque anti-bruit; Le PID, avec la mesure en continue sur le site (1 PID pour l'ensemble de l'équipe), permettant d'alerter sur la présence de composés volatils.		
Déchets	Contamination	A l'issue des travaux de foration, les sondages ont été rebouchés à l'aide des cuttings non impactés puis nous avons procédé à la remise en état avec cimentation pour les dalles bétons. L'ensemble des déchets et cuttings générés lors de la pose des ouvrages a été géré conformément à la réglementation en vigueur, c'est-à-dire laissés sur site (cuttings non impactés selon les indices de terrain). Les déchets d'EPI consommables type gants ont été gérés par Envisol.		

10.2 Aléas de chantier - synthèse des écarts

Lors de la réalisation des sondages S7 et S11, la dalle béton était trop importante pour être traversée par le carottier portatif. Il a été tenté de décaler le S11 vers le centre de la pièce (S11 bis) mais un refus a également eu lieu. Il a donc été décidé de placer un nouveau sondage à l'extérieur du bâtiment, juste devant l'entrée (IS20). Ainsi, aucun échantillon n'a été prélevé sur les sondages S7, S11 et S11 bis.

10.3 Investigations réalisées

Le tableau et la figure suivants présentent de manière synthétique les investigations réalisées.

Tableau 17 : Synthèse des investigations menées

Milieu	Investigations menées		
Sols	18 sondages de 2 à 5 m profondeur		
Gaz des sols	Gaz des sols 4 piézairs		

Le détail des investigations et les résultats sont présentés par milieu dans les chapitres ci-dessous.

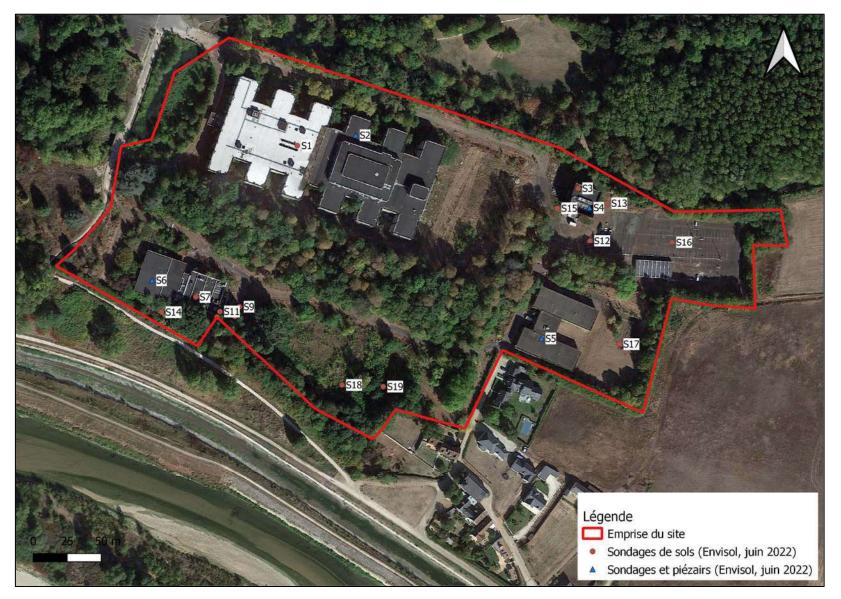


Figure 20 : Localisation des investigations réalisées.

Figure 21. Localisation des investigations réalisées au niveau du bâtiment CT1

10.4 Investigations des sols - A200

10.4.1 Réalisation des sondages sol

Le tableau suivant présente la méthodologie qui a été employée pour l'investigation des sols.

Tableau 18 : Méthodologie employée pour l'investigation des sols.

Dates	Du 07 au 08/06/2022
Entreprise de forage	ATME
Mode de forage	Les forages ont été réalisés au carottier portatif au niveau du bâtiment CT1 et à la tarière mécanique pour le reste. Cette technique a été retenue en raison de sa facilité de mise en œuvre et des objectifs de l'étude (diagnostic initial) et de la nature des zones à risques potentielles de pollution.
Nombre de sondages	18 sondages entre 2 et 5 m
Stratégie d'échantillonnage	Un ingénieur d'ENVISOL a supervisé la réalisation des forages et a procédé au prélèvement des échantillons de sols et à la réalisation des mesures sur site. Les fiches de terrain ont été complétées avec les informations suivantes : • Description de la nature des sols ; • Constats organoleptiques (odeur et couleur) ; • Résultats des mesures sur site ; • L'échantillonnage (nom, passe, profondeur). Les fiches de terrains complétées lors de la réalisation des sondages sont présentées en Annexe 5. Un échantillon composite par passe de 1 m maximum a été réalisé, variant en fonction des changements lithologiques et des constats organoleptiques (odeurs, couleurs,). Un niveau de sol a été jugé suspect lorsqu'il présentait des traces de souillures, des caractéristiques organoleptiques anormales (couleur, odeur, texture) ou qu'il contenait des matériaux suspects (morceaux de briquettes, mâchefers, remblais).
Protocole d'échantillonnage	Le protocole d'échantillonnage est réalisé de manière à prévenir les contaminations croisées : • Les gants jetables sont changés lorsqu'ils sont sales ou contaminés ; • Le matériel de prélèvement est nettoyé entre chaque nouvelle passe ou bien après avoir traversé des horizons comportant des indices organoleptiques. Chaque échantillon était muni de codes-barres afin de disposer d'une référence complémentaire d'identification de l'échantillon en cas d'effacement des écritures sur l'échantillon.
Rebouchage et remise en état	Les sondages ont été rebouchés avec les terrains traversés (rebouchage dans l'ordre de la lithologie) et le revêtement de surface (dalle) a été remis en état.
Conditionnement, conservation, transport des échantillons	L'ensemble des échantillons a été prélevé dans un flaconnage adapté, fourni par le laboratoire AGROLAB, accrédité COFRAC. Les échantillons ont ensuite été systématiquement conservés à l'abri de la lumière et de la chaleur dès le prélèvement. Ils ont été transférés rapidement par transporteur express vers le laboratoire (sous 24 à 48 heures) en glacières réfrigérées (<5°C). Dates de prélèvements : 7/06/2022 et 8/06/2022 et d'envoi des échantillons : 09/06/2022
Géoréférencement	L'ensemble des investigations a fait l'objet d'un géoréférencement à l'aide d'une antenne GPS. Le système de coordonnée est : Lambert 93

Une synthèse des investigations est réalisée dans le tableau ci-dessous, comprenant le programme analytique.

Tableau 19 : Synthèse des investigations réalisées sur les sols, lithologie, échantillonnage et programme analytique.

Justifications /Zone à risque	Sondage	X (en m)	Y (en m)	Échantillon réalisé	Lithologie	Indices organoleptiques/mesures in situ	Analyses réalisées
				S6 (0,08- 0,28)	Remblais sable grossier marron orangé		Pack ISDI métaux – COHV -HC C5-C10 Mesures sur site : PID
CT1 – transformateur	S6	623816.18	6756313.75	S6 (0,28-1)	Argile sableuse marron	Aucun	Pack ISDI métaux — COHV -HC C5-C10 Mesures sur site : PID
				S6 (1-2)	Argile sableuse marron		Stockage laboratoire
CT1 have formation	520	622062.00	6756206 77	S20 (0,40- 1,3)	Sable et silex marron	PID = 8 ppmv	Pack ISDI métaux – COHV -HC C5-C10 Mesures sur site : PID
CT1 - transformateur	S20	623863.90	6756286.77	S20 (1,3-2)	Argile sableuse marron foncé		Pack ISDI métaux – COHV -HC C5-C10 Mesures sur site : PID
	S14		6756290.37	S14 (0-1)	Sable argileux et silex marron foncé	Aucun	Stockage laboratoire
CT1 – bac à graisses		623823.09		S14 (1-2)	Argile sableuse marron		Pack ISDI métaux – COHV -HC C5-C10 Mesures sur site : PID
				S14 (2-3)	Sable argileux marron		Stockage laboratoire
				S9 (0,05-1)	Sable grossier argileux marron		Stockage laboratoire
			6756294.31	S9 (1-2)	Argile sableuse marron		Pack ISDI métaux – COHV -HC C5-C10 Mesures sur site : PID
CT1 – cuve de fuel	50	C22000 F4		S9 (2-2,5)	Argile sableuse marron	Aucun	Charles a laborataina
	S9	623880.51		S9 (2,5-3,5)	Craie argileuse blanchâtre		Stockage laboratoire
				S9 (3,5-4,5)	Craie argileuse blanchâtre		Pack ISDI métaux – COHV -HC C5-C10 Mesures sur site : PID
				S9 (4,5-5)	Craie argileuse blanchâtre	Humide	Stockage laboratoire

	S8 (0,05-1) Sable très fin marron légèrement argileux			Pack ISDI métaux – COHV -HC C5-C10 Mesures sur site : PID			
				S8 (1-2)	Sable très fin marron argileux	Aucun	
CT1 – cuve de fuel	\$8	623873.54	6756289.78	S8 (2-3)	Sable très fin marron légèrement argileux		Stockage laboratoire
				S8 (3-4)	Argile sableuse marron	Passées noirâtres	Pack ISDI métaux – COHV -HC C5-C10 Mesures sur site : PID
				S8 (4-5)	Argile crayeuse blanchâtre	Aucun	Stockage laboratoire
				S10 (0,05-1)	Sable fin légèrement argileux marron	PID = 4.1 ppmV	Pack ISDI métaux – COHV -HC C5-C10 Mesures sur site : PID
				S10 (1-2)	Sable fin légèrement argileux marron		
CT1 – cuve de fuel	S10	623877.03	6756287.21	S10 (2-3)	Sable fin légèrement argileux marron	Aucun	Stockage laboratoire
				S10 (3-4)	Argile sableuse marron et silex		
				S10 (4-5)	Argile sableuse marron	PID = 3.6 ppmV	Pack ISDI métaux – COHV -HC C5-C10 Mesures sur site : PID
<i>(</i>				S1 (0-1)	Remblai argilo-sableux marron et silex	- /	Pack ISDI métaux – COHV -HC C5-C10 Mesures sur site : PID
B1 - transformateur	S1	623922.91	6756412.73	S1 (1-2)	Remblai argilo-sableux marron et silex	Présence de ferraille	РСВ
B2 – transformateur et atelier de	62	622065.04	6756420.27	S2 (0-1)	Remblai argileux marron compact	Charbon	Pack ISDI métaux – COHV -HC C5-C10 Mesures sur site : PID
charge d'accumulateur	S2	623965.84	6756420.37	S2 (1-2)	Remblai argileux marron compact	Aucun	Stockage laboratoire
PVL - transformateur	S 5	624102.39	6756271.05	S5 (0-1)	Remblai sable grossier argileux marron	Aucun	Pack ISDI métaux – COHV -HC C5-C10 Mesures sur site : PID

				S5 (1-2)	Remblai de marne blanchâtre et argile sableuse marron par passes		Stockage laboratoire		
DVI sadias	647	624450.60	6756266.02	S17 (0-1)	Remblai argileux compact marron	A	Pack ISDI métaux – COHV -HC C5-C10 Mesures sur site : PID		
PVL – parking	S17	624159.69	6756266.93	S17 (1-2)	Alternance argile et argile sableuse marron clair	Aucun	Stockage laboratoire		
				S4 (0-1)	Remblai argilo-sableux grossier marron		Pack ISDI métaux – COHV -HC C5-C10 Mesures sur site : PID		
CT2 – transformateur	S4	624137.69	6756367.24	S4 (1-2)	Argile faiblement sableuse marron	Aucun	Stockage laboratoire		
				S12 (0-1)	Remblai argilo-sableux grossier marron		Stockage laboratoire		
	S12	624138.17	6756342.85	S12 (1-2)	Remblai sablo-argileux grossier marron		Pack ISDI métaux – COHV -HC C5-C10 Mesures sur site : PID		
CT2 – Cuve d'acide sulfurique et fuel				S12 (2-3)	Remblai argilo-sableux grossier marron	Aucun	Stockage laboratoire		
				S12 (3-4)	Sable grossier argileux marron		Pack ISDI métaux – COHV -HC C5-C10 Mesures sur site : PID		
				S12 (4-5)	Argile sableuse	Humide, très collante	Stockage laboratoire		
				S13 (0-1)	Remblai sablo-argileux marron foncé		Pack ISDI métaux – COHV -HC C5-C10 Mesures sur site : PID		
				S13 (1-2)	Argile sableuse marron foncé	Aucun	Pack ISDI métaux – COHV -HC C5-C10 Mesures sur site : PID		
CT2 – groupe électrogène	S13	624150.81	6756370.52	S13 (2-3)	Argile légèrement sableuse		Stockage laboratoire		
				S13 (3-4)	Argile crayeuse marron clair		Pack ISDI métaux – COHV -HC C5-C10 Mesures sur site : PID		
				S13 (4-5)	Marne blanchâtre	Humide	Stockage laboratoire		

				S15 (0-1)	Remblai de sable grossier argileux marron		Stockage laboratoire
CT2 – fosse de reprise des eaux usées	S15	624114.08	6756366.82	S15 (1-2)	Remblai argilo-sableux marron compact	Aucun	Pack ISDI métaux – COHV -HC C5-C10 Mesures sur site : PID
				S15 (2-3)	Remblai argile sableuse marron		Pack ISDI métaux – COHV -HC C5-C10 Mesures sur site : PID
CT2 – transformateur	\$3	624129.46	6756381.43	S3 (0-1)	Remblai argilo-sableux	Aucun	Pack ISDI métaux – COHV -HC C5-C10 Mesures sur site : PID
				S3 (1-2)	Remblai argilo-sableux		Stockage laboratoire
CT2 mading	546	634400 45	6756244.76	S16 (0-1)	Remblai argilo-sableux marron foncé	A	Pack ISDI métaux – COHV -HC C5-C10 Mesures sur site : PID
CT2 – parking	S16	624198.45	6756341.76	S16 (1-2)	Remblai sablo-argileux marron foncé	Aucun	Stockage laboratoire
			6756235.39	S19 (0,10-1)	Marne argileuse blanche	Aucun	Pack ISDI métaux – COHV -HC C5-C10 Mesures sur site : PID
Ancienne zone de décharge et enfouissement	S19	623986.07		S19 (1-2)	Marne argileuse blanche		
emouissement				S19 (2-3)	Marne argileuse blanche	Humide	Stockage laboratoire
				S19 (3-4)	Marne argileuse blanche		
				S18 (0-1)	Argile marneuse blanchâtre	Aucun	Pack ISDI métaux – COHV -HC C5-C10 Mesures sur site : PID
Ancienne zone de décharge et	64.0	622055 70	6756226.64	S18 (1-2)	Marne argileuse blanchâtre		Stockage laboratoire
enfouissement	S18	623955.78	6756236.61	S18 (2-3)	Marne argileuse blanchâtre	Humide	Pack ISDI métaux – COHV -HC C5-C10 Mesures sur site : PID
				S18 (3-4)	Marne argileuse blanchâtre		Stockage laboratoire

10.4.2 Résultats analytiques

10.4.2.1 Valeurs de références

Conformément à la méthodologie nationale en vigueur, les résultats d'analyses de sols sont interprétés au regard des données disponibles en matière de bruit de fond, afin de définir si le site présente ou non un écart par rapport au contexte local voire à défaut national ou à des valeurs de gestion éventuellement disponibles (tableau ci-dessous).

Tableau 20. Valeurs de références dans les sols

Composés / familles de composés	Valeurs de comparaison
Métaux	Gamme de teneurs du programme ASPITET à l'échelle nationale (source INRA); • la gamme de valeurs couramment observées dans les « sols ordinaires » de toute granulométrie; • la gamme de valeurs couramment observées dans le cas « d'anomalies naturelles modérées ».
	Gammes de concentrations définies par l'INRA (2004) dans les programmes RMQS (valeur locale).
Plomb	Objectifs de gestion des expositions le Haut Conseil de la Santé Publique (HCSP) : une valeur de vigilance est de 100 mg/kg MS; une valeur de contamination des milieux d'exposition devant conduire à un dépistage du saturnisme infantile est de 300 mg/kg MS.
Arsenic	Valeur seuil de 25 mg/kg en arsenic bioaccessible proposée par la Haute Autorité de Santé (HAS) en 2020 afin de définir une zone à risques et déclencher de mesures de dépistage d'une éventuelle surexposition de la population.
НАР	Valeurs de bruit de fond pour les sols urbains déterminés par l'ATSDR (Agency for Toxic Substances and Diseases Registry).
Composés organiques	Valeurs réglementaires d'acceptation en installation de stockage de déchets inertes (ISDI) pour les composés organiques définis dans l'arrêté du 12 décembre 2014

10.4.2.2 Résultats

Les bordereaux d'analyse du laboratoire sont fournis dans l'Annexe 6.

L'ensemble des résultats est fourni dans le tableau ci-dessous.

Tableau 21. Résultats analytiques sur les sols brut

Second					Tuble	uu 21. nesi	uitats anai	ytiques sui	ופא אטוא טו	uı					
Characteristic part	Zone à risque							graisses -							
Discorption	Sondage			S6		S	20	S14	S	59	S	8			
Control of terms	Profondeur sondage (m	1)			2	2	2	3		5	!	5			
Mesure PID	Lithologie			sable	_	Sable à silex	_	_	_	Marne	légèrement	_			
Parendees Units 10, 35,000 36,000 36,000 32,000	Observation de terrain	ı		-	-	-	-	-	-	-	-				
Modernate Mode	Mesures PID			0,2	0	8	2,3	0,1	0,1	0,8	0,4	1,4			Cas d'anomalies
Common Company Front	Paramètres	Unité	LQ		S6 (0.28-1)	S20 (0.4-1.3)	S20 (1.3-2)	S14 (1-2)	S9 (1-2)	S9 (3.5-4.5)	S8 (0.05-1)	S8 (3-4)		rencontrées dans	
Principal Column 1.5	Matière sèche		0,01	95,5	83,5	90,0	87,3	87,2	85,4	85,8	96,1	90,2	/		
NAMES CASTON CA	COT Carbone Organique Total		1000,00	8600	7500	3500	9400	6300	6200	3100	3900	8200	30000	1	/
Margin (Not) Marg	pH-H2O		0,1	8,7	8,3	11,0	9,4	8,4	8,6	8,8	8,6	8,7	/	/	/
Carrier (Circle)	ELEMENTS TRACES METALLIQUES (ETM)														
Champer (Cri)					18								/		
Course (rol) molys 66 02 13 14 13 15 75 6.1 57 16 75 75 16 75 75 75 75 75 75 75 7								_					/		
Number			1										/		
Side (N)													/		
Floreth (Po) myky ks 5, 5 20 25 25 25 28 31 31 37 31 47 27 31 7 260 60 40													/		
Total			_							-			/		
Commonstance Comm													/		
Sentème		mg/kg MS	1	47	58	19	45	50	36	22	30	36	/	10-100	100-250
Totaleme															
Emphemème mg/kg MS 0,55 0,050										<u> </u>			/	/	/
Part													/	/	/
Osylene mg/kg NS 0.05 <0,060 <0,060 <0,060 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,05											1		/	/	/
Sommer Ny-leves mg/kg MS - n.d. n.										 			/	/	/
### PRINCACABURS TOTALY (NOT) ### PR	•												/	/	/
	•												- /	/	/
Fraction Injuntations C5C 6		mg/kg IVIS	-	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	ь	/	/
Fraction CS-CID mp/kg MS		ma/ka NAC	0.2	40.30	r0.20	<0.20	e0 20	<0.20	<0.20	<0.20	<0.20	<0.20	,	,	,
Fraction CS-CE										-			/	/	/
Fraction Ref Mark MS O. A -0.40			_				,						/	/	/
Fraction alignatique \(\text{SC-S8}\) mg/kg MS 0.2 0.2 0.20			1										/	/	/
Fraction aromatique >CG-CS mg/kg MS 0.2 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20													/	/	/
Fraction caliphatique >C8C-C10			1										,	,	/
Fraction canomatique VSB-CCI													/	1	/
Fraction C10-C12			_										/	,	,
Fraction C12-C15				<4,0	<4,0	<4,0	<4,0	<4,0	<4,0	<4,0	<4,0	<4,0	/	,	/
Fraction C20-C24	Fraction C12-C16	mg/kg MS	4	<4,0	<4,0	<4,0	<4,0	<4,0	<4,0	<4,0	<4,0	<4,0	/	/	/
Fraction C24-C28	Fraction C16-C20	mg/kg MS	2	<2,0	9,0	2,4	2,6	<2,0		4,5			/	1	/
Fraction C28-C32	Fraction C20-C24	mg/kg MS	2	2,8	5,7	2,4	2,9	<2,0	<2,0	7,0	<2,0	5,2	/	/	/
Fraction C32-C36													/	/	/
Fraction C36-C40													/	/	/
Hydrocarbures totaux C10-C40 mg/kg MS 20 <20.0 30,4 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 33,2 <20.0 82,3 500 / / / HYDROCARBURES AROMATIQUES POLYCYCLIQUES (HAP) Naphtaleine mg/kg MS 0.05 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.05											†		/	/	/
HYDROCARBURES AROMATIQUES POLYCYCLIQUES (HAP) Naphtalene													/	/	/
Naphtalène				<20,0	30,4	<20,0	<20,0	<20,0	<20,0	33,2	<20,0	82,3	500	/	/
Acénaphtylène mg/kg MS 0,05 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050				<0.050	<0.0E0	<0.0E0	<0.0E0	<0.0E0	<0.0E0	<0.0E0	<0.0E0	<0.0E0	,	0.15	,
Acénaphtène mg/kg MS 0,05 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,05	•												/	U,15	/
Fluorène mg/kg MS 0,05 <0,050 0,078 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050													//	/	/
Phénanthrène	-												/	/	/
Anthracène mg/kg MS 0,05 <0,050 0,38 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050													/	,	,
Fluoranthène mg/kg MS 0,05 <0,050													,	/	,
Pyrène													/	/	/
Chrysène	Pyrène			<0,050	2,3	<0,050	<0,050	<0,050	0,26	<0,050	0,076	<0,050	/	/	/
Benzo(b)fluoranthène mg/kg MS 0,05 <0,050 0,85 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050													/	/	/
Benzo(k)fluoranthène mg/kg MS 0,05 <0,050 0,43 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 /	-												/	,	',
Benzo(a)pyrène mg/kg MS 0,05 <0,050 1,0 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0													/	,	<u>',</u>
Dibenzo(a,h)anthracène mg/kg MS 0,05 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050			1				_				-		<i>'</i>	,	,
Benzo(g,h,i)pérylène mg/kg MS 0,05 <0,050 0,63 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 / / / / / / / / / / / / / / / / / /							_				-		/	/	/
Indéno(1,2,3-cd)pyrène mg/kg MS 0,05 <0,050 0,81 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 /											-		/	/	/
HAP (6 Borneff) - somme mg/kg MS - n.d. 5,92 n.d. n.d. n.d. 0,754 n.d. 0,0720 0,0980 Somme HAP (VROM) mg/kg MS - n.d. n.d. n.d. 1,23 n.d. 0,0720 0,0980							_						/	/	/
		1		n.d.	5,92	n.d.	n.d.	n.d.	0,754	n.d.	0,0720	0,0980			
HAP (EPA) - somme mg/kg MS - n.d. 12,5 n.d. n.d. n.d. 1,63 n.d. 0,148 0,0980 50 25 /	Somme HAP (VROM)			n.d.	9,30	n.d.	n.d.	n.d.	1,23	n.d.	0,0720	0,0980			
	HAP (EPA) - somme	mg/kg MS	-	n.d.	12,5	n.d.	n.d.	n.d.	1,63	n.d.	0,148	0,0980	50	25	/

Tableau 22. Résultats analytiques sur les sols brut

Zone à risque			isformateur T1	Ancien trans chaudière	formateur + fuel - CT1	bac à graisses - CT1	Anciennes cuves FOD - CT1		Anciennes c			
Sondage			S	6	S	20	S14	S	9	S	8	
Profondeur sondage (m	rofondeur sondage (m)			2		2	3	!	5	5	5	
Lithologie	Lithologie			Argile sableuse	Sable à silex	Argile sableuse	Argile sableuse	Argile sableuse	Marne	Sable légèrement argileux	Argile sableuse	
Observation de terrain	Observation de terrain		-	-	-	-	-	-	-	-	passées noirâtres	
Mesures PID			0,2	0	8	2,3	0,1	0,1	0,8	0,4	1,4	
Paramètres	Unité	LQ	S6 (0.08- 0.28)	S6 (0.28-1)	S20 (0.4-1.3)	S20 (1.3-2)	S14 (1-2)	S9 (1-2)	S9 (3.5-4.5)	S8 (0.05-1)	S8 (3-4)	seuils ISDI **
COMPOSES ORGANO HALOGENES VOLATILS (COHV)											
Tétrachloroéthylène	mg/kg MS	0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	/
Trichloroéthylène	mg/kg MS	0,05	<0,05	<0,05	0,09	<0,05	<0,05	<0,05	<0,05	0,30	0,07	/
cis-1,2-Dichloroéthène	mg/kg MS	0,025	<0,025	<0,025	0,033	<0,025	<0,025	<0,025	<0,025	<0,025	<0,025	/
Trans-1,2-Dichloroéthylène	mg/kg MS	0,025	<0,025	<0,025	<0,025	<0,025	<0,025	<0,025	<0,025	<0,025	<0,025	/
Somme cis/trans-1,2-Dichloroéthylènes	mg/kg MS	-	n.d.	n.d.	0	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	/
1,1-Dichloroéthylène	mg/kg MS	0,1	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	/
Chlorure de Vinyle	mg/kg MS	0,02	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	/
1,1,2-Trichloroéthane	mg/kg MS	0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	/
1,1,1-Trichloroéthane	mg/kg MS	0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	/
1,2-Dichloroéthane	mg/kg MS	0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	/
1,1-Dichloroéthane	mg/kg MS	0,1	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	/
Tétrachlorométhane	mg/kg MS	0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	/
Trichlorométhane	mg/kg MS	0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	/
Dichlorométhane	mg/kg MS	0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	/
200 (20)	//	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	,
PCB (28)	mg/kg Ms	0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	
PCB (52)	mg/kg Ms	0,001	<0,001	<0,001	<0,001	0,001	<0,001	<0,001	<0,001	<0,001	0,014	/
PCB (101)	mg/kg Ms	0,001	0,005	<0,001	<0,001	0,003	<0,001	<0,001	<0,001	<0,001	0,022	/
PCB (118) PCB (138)	mg/kg Ms mg/kg Ms	0,001	<0,001 0,016	<0,001 0,001	<0,001 0,004	0,002	<0,001 0,001	<0,001 <0,001	<0,001 <0,001	<0,001 <0,001	0,017 0,014	
PCB (138)		0,001	0,016	0,001	0,004	0,003	0,001	<0,001	<0,001	<0,001	0,014	' ,
PCB (193) PCB (180)	mg/kg Ms mg/kg Ms	0,001	0,014	<0,001	0,004	0,002	<0,002	<0,001	<0,001	<0,001	0,011	/
Somme 7 PCB	mg/kg Ms	-	0,014	0,0020	0,003	0,001	0,0030	n.d.	n.d.	n.d.	0.082	1

Tableau 23. Résultats analytiques sur les sols brut

Duefen de un condess (m				5		2	2			2		5	1		
Profondeur sondage (m	1))	Remblai	2		2 Remblais	2	Remblais	Remblai				
Lithologie			Sable	Argile	argilo-		Remblai	sablo-	Remblais	argilo-	sablo-	Sable			
			argileux	sableuse	sableux		argileux	argileux	argileux	sableux	argileux	argileux			
Observation de terrain	1		-	-	féraille	féraille	Charbon	-	-	-	-	-			
				2.5					0.4	0.0	4.0	0.0			
Mesures PID			4,1	3,6	0		0	0,2	0,4	0,2	1,9	0,8	th-ucpu	Gamme de valeurs	Cas d'anomalies
													seuils ISDI **	couramment rencontrées dans	naturelles
Paramètres	Unité	LQ	S10 (0.05-1)	S10 (4-5)	S1 (0-1)	S1(1-2)	S2 (0-1)	S5 (0-1)	S17 (0-1)	S4 (0-1)	S12 (1-2)	S12 (3-4)		les sols *	modérées
Mattheway also			05.4	07.0	02.7	70	76.5	04.0	05.5	02.0	00.7	20.5	,		
Matière sèche COT Carbone Organique Total		0,01 1000,00	96,1 4400	87,3 6900	83,7 6200	79 -	76,5 10000	91,8 1200	85,5 2900	82,8 8100	90,7 5100	89,5 3600	30000	/	/
pH-H2O		0,1	8,9	8,6	8,8	-	8,2	9,0	8,2	9,4	8,4	8,7	/	/	/
ELEMENTS TRACES METALLIQUES (ETM)															
Arsenic (As)	mg/kg MS	1	12	14	24	-	35	4,5	4,1	18	15	10	/	1-25	30-60
Cadmium (Cd) Chrome (Cr)	mg/kg MS mg/kg MS	0,1	<0,1 26	<0,1 26	0,2 47	-	0,2 59	<0,1 11	<0,1 21	0,1 43	0,1 15	<0,1 16	/	0,05-0,45 10-90	0,7-2,0 90-150
Cuivre (cu)	mg/kg MS	0,2	9,2	10	15	-	20	4,3	6,2	18	7,9	7,7	/	2-20	20-62
Mercure (Hg)	mg/kg MS	0,05	<0,05	<0,05	<0,05	-	<0,05	<0,05	<0,05	0,06	<0,05	<0,05	/	0,02-0,2	0,15-2,3
Nickel (Ni)	mg/kg MS	0,5	19	17	27	-	36	7,7	13	25	9,8	13	/	9-50	60-130
Plomb (Pb)	mg/kg MS	0,5	17	17	48	-	52	6,5	20	36	14	14	/	2-60	60-90
Zinc (Zn) COMPOSES AROMATIQUES VOLATILS (BTEX)	mg/kg MS	1	41	46	80	-	96	17	35	91	31	30	/	10-100	100-250
Benzène	mg/kg MS	0,05	<0,050	<0,050	<0,050	-	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	/	/	/
Toluène	mg/kg MS	0,05	<0,050	<0,050	<0,050	-	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	/	/	/
Ethylbenzène	mg/kg MS	0,05	<0,050	<0,050	<0,050	-	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	/	/	/
m,p-Xylène	mg/kg MS	0,1	<0,10	<0,10	<0,10	-	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	/	/	/
o-Xylène	mg/kg MS mg/kg MS	0,05	<0,050 n.d.	<0,050 n.d.	<0,050 n.d.	-	<0,050 n.d.	0,12 0,12	<0,050 n.d.	<0,050 n.d.	<0,050 n.d.	<0,050 n.d.	/	/	/
Somme Xylènes BTX total	mg/kg MS		n.d.	n.d.	n.d.	-	n.d.	0,12	n.d.	n.d.	n.d.	n.d.	6	/	/
HYDROCARBURES TOTAUX (HCT)			11141					5,22						,	,
Fraction aliphatique C5-C6	mg/kg MS	0,2	<0,20	<0,20	<0,20	-	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	/	/	/
Fraction C5-C10	mg/kg MS	1	<1,0	<1,0	<1,0	-	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	/	/	/
Fraction >C6-C8 Fraction C8-C10	mg/kg MS	0,4	<0,40 <0,40	<0,40	<0,40 <0,40	-	<0,40 <0,40	<0,40 <0,40	<0,40 <0,40	<0,40 <0,40	<0,40 <0,40	<0,40 <0,40	/	/	/
Fraction C8-C10 Fraction aliphatique >C6-C8	mg/kg MS mg/kg MS	0,4	<0,40	<0,40	<0,40	-	<0,40	<0,40	<0,40	<0,40	<0,40	<0,40	/	/	/
Fraction aromatique >C6-C8	mg/kg MS	0,2	<0,20	<0,20	<0,20	-	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	/	/	/
Fraction aliphatique >C8-C10	mg/kg MS	0,2	<0,20	0,23	<0,20	-	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	/	/	/
Fraction aromatique >C8-C10	mg/kg MS	0,2	<0,20	<0,20	<0,20	-	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	/	/	/
Fraction C10-C12 Fraction C12-C16	mg/kg MS mg/kg MS	4	<4,0 <4,0	<4,0 <4,0	<4,0 <4,0	-	<4,0 <4,0	<4,0 <4,0	<4,0 <4,0	<4,0 <4,0	<4,0 <4,0	<4,0 <4,0	/	/	/
Fraction C16-C20	mg/kg MS	2	<2,0	<2,0	3,9	-	2,9	<2,0	<2,0	4,0	<2,0	2,5	/	/	/
Fraction C20-C24	mg/kg MS	2	<2,0	<2,0	5,3	-	7,8	<2,0	<2,0	6,9	<2,0	<2,0	/	/	/
Fraction C24-C28	mg/kg MS	2	<2,0	<2,0	4,7	-	28,6	<2,0	<2,0	12,1	<2,0	4,0	/	/	/
Fraction C28-C32	mg/kg MS	2	2,2	<2,0	5,7	-	61	<2,0	<2,0	17	3,5	8,9	/	/	/
Fraction C32-C36 Fraction C36-C40	mg/kg MS mg/kg MS	2	<2,0 <2,0	<2,0 <2,0	3,9 <2,0	-	56,1 22,2	<2,0 <2,0	<2,0 <2,0	15,8 7,9	3,4 <2,0	12,5 8,4	/	/	/
Hydrocarbures totaux C10-C40	mg/kg MS	20	<20,0	<20,0	27,4	-	180	<20,0	<20,0	66,3	<20,0	39,4	500	/	/
HYDROCARBURES AROMATIQUES POLYCYCLIC														·	
Naphtalène	mg/kg MS	0,05	<0,050	<0,050	<0,050	-	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	/	0,15	/
Acénaphtylène Acénaphtène	mg/kg MS mg/kg MS	0,05	<0,050 <0,050	<0,050	<0,050 <0,050	-	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	/	/	/
Fluorène	mg/kg MS	0,05	<0,050	<0,050	<0,050	-	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	/	/	/
Phénanthrène	mg/kg MS	0,05	<0,050	<0,050	<0,050	-	<0,050	<0,050	<0,050	0,24	<0,050	<0,050	/	/	/
Anthracène	mg/kg MS	0,05	<0,050	<0,050	<0,050	-	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	/	/	/
Fluoranthène	mg/kg MS	0,05	<0,050	<0,050	<0,050	-	0,14	<0,050	<0,050	0,40	<0,050	<0,050	/	/	/
Pyrène Benzo(a)anthracène	mg/kg MS mg/kg MS	0,05	<0,050 <0,050	<0,050	<0,050 <0,050	-	0,11 0,12	<0,050 <0,050	<0,050 <0,050	0,36 0,22	<0,050 <0,050	<0,050 <0,050	/	/	/
Chrysène	mg/kg MS	0,05	<0,050	<0,050	<0,050	-	0,12	<0,050	<0,050	0,22	<0,050	<0,050	/	/	/
Benzo(b)fluoranthène	mg/kg MS	0,05	<0,050	<0,050	<0,050	-	<0,10	<0,050	<0,050	0,12	<0,050	<0,050	/		,
Benzo(k)fluoranthène	mg/kg MS	0,05	<0,050	<0,050	<0,050	-	<0,050	<0,050	<0,050	0,12	<0,050	<0,050	/	/	/
Benzo(a)pyrène	mg/kg MS	0,05	<0,050 <0,050	<0,050 <0,050	<0,050	-	0,094	<0,050	<0,050 <0,050	0,22	<0,050	<0,050	/	/	/
Dibenzo(a,h)anthracène Benzo(g,h,i)pérylène	mg/kg MS mg/kg MS	0,05	<0,050	<0,050	<0,050 <0,050	-	<0,050 0,075	<0,050 <0,050	<0,050	<0,050 0,16	<0,050 <0,050	<0,050 <0,050	/	/	/
Indéno(1,2,3-cd)pyrène	mg/kg MS	0,05	<0,050	<0,050	<0,050	-	<0,050	<0,050	<0,050	0,19	<0,050	<0,050	/	/	/
HAP (6 Borneff) - somme	mg/kg MS	-	n.d.	n.d.	n.d.	-	0,309	n.d.	n.d.	1,21	n.d.	n.d.		·	
Somme HAP (VROM)	mg/kg MS	-	n.d.	n.d.	n.d.	-	0,539	n.d.	n.d.	1,82	n.d.	n.d.			
HAP (EPA) - somme	mg/kg MS	-	n.d.	n.d.	n.d.	-	0,649	n.d.	n.d.	2,30	n.d.	n.d.	50	25	/

Tableau 24. Résultats analytiques sur les sols brut

							Ancien						
Zone à risque				ves FOD- CT1		Ancien transformateur - B1		Ancien transformat eur - PVL	Parking visiteurs - PVL	Ancien transformat eur - CT2	Cuve d'acide huiles	sulfurique et s - CT2	
Sondage			Si	10	S	1	S2	S5	S17	S4	S	12	
Profondeur sondage (m)		į,	5		2	2	2	2	2	į	5	
Lithologie			Sable argileux	Argile sableuse	Remblai argilo- sableux		Remblai argileux	Remblais sablo- argileux	Remblais argileux	Remblais argilo- sableux	Remblai sablo- argileux	Sable argileux	
Observation de terrai	in		-	-	féraille	féraille	Charbon	-	-	-	-	-	
Mesures PID			4,1	3,6	0		0	0,2	0,4	0,2	1,9	0,8	
Paramètres	Unité	LQ	S10 (0.05-1)	S10 (4-5)	S1 (0-1)	S1(1-2)	S2 (0-1)	S5 (0-1)	S17 (0-1)	S4 (0-1)	S12 (1-2)	S12 (3-4)	seuils ISDI **
COMPOSES ORGANO HALOGENES VOLATILS	(COHV)												
Tétrachloroéthylène	mg/kg MS	0,05	0,14	<0,05	<0,05	-	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	/
Trichloroéthylène	mg/kg MS	0,05	0,36	<0,05	<0,05	-	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	/
cis-1,2-Dichloroéthène	mg/kg MS	0,025	<0,025	<0,025	<0,025	-	<0,025	<0,025	<0,025	<0,025	<0,025	<0,025	/
Trans-1,2-Dichloroéthylène	mg/kg MS	0,025	<0,025	<0,025	<0,025	-	<0,025	<0,025	<0,025	<0,025	<0,025	<0,025	/
Somme cis/trans-1,2-Dichloroéthylènes	mg/kg MS	-	n.d.	n.d.	n.d.	-	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	/
1,1-Dichloroéthylène	mg/kg MS	0,1	<0,10	<0,10	<0,10	-	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	/
Chlorure de Vinyle	mg/kg MS	0,02	<0,02	<0,02	<0,02	-	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	/
1,1,2-Trichloroéthane	mg/kg MS	0,05	<0,05	<0,05	<0,05	-	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	/
1,1,1-Trichloroéthane	mg/kg MS	0,05	<0,05	<0,05	<0,05	-	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	/
1,2-Dichloroéthane	mg/kg MS	0,05	<0,05	<0,05	<0,05	-	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	/
1,1-Dichloroéthane	mg/kg MS	0,1	<0,10	<0,10	<0,10	-	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	/
Tétrachlorométhane	mg/kg MS	0,05	<0,05	<0,05	<0,05	-	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	/
Trichlorométhane	mg/kg MS	0,05	<0,05	<0,05	<0,05	-	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	/
Dichlorométhane	mg/kg MS	0,05	<0,05	<0,05	<0,05	-	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	/
PCB (28)	mg/kg Ms	0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	/
PCB (52)	mg/kg Ms	0,001	<0,001	<0,001	0,005	0,001	<0,001	<0,001	<0,001	0,008	<0,001	0,001	/
PCB (101)	mg/kg Ms	0,001	<0,001	<0,001	0,082	0,024	<0,001	<0,001	<0,001	0,037	0,001	0,004	/
PCB (118)	mg/kg Ms	0,001	<0,001	<0,001	0,012	0,004	<0,001	<0,001	<0,001	0,013	<0,001	0,002	/
PCB (138)	mg/kg Ms	0,001	0,002	<0,001	0,25	0,068	<0,001	<0,001	<0,001	0,072	0,002	0,006	/
PCB (153)	mg/kg Ms	0,001	0,001	<0,001	0,31	0,086	<0,001	<0,001	<0,001	0,087	0,002	0,007	/
PCB (180)	mg/kg Ms	0,001	<0,001	<0,001	0,29	0,082	<0,001	<0,001	<0,001	0,068	0,002	0,004	/
Somme 7 PCB	mg/kg Ms	-	0,0030	n.d.	0,95	0,27	n.d.	n.d.	n.d.	0,29	0,0070	0,024	1

Tableau 25. Résultats analytiques sur les sols brut

				,	ableau 25.	Resultuts	ununyuqu	es sur les s	sois brut						
Profondeur sondage (m	n)			5			3	2	2	4	4	4			
			Remblais	Argile	Marne très	Remblais	Remblais	Remblais	Remblais	Marne	Argile	Marne			
Lithologie			sablo-	sableuse	argileuse	argilo-	argilo-	argilo-	argilo-	argileuse	marneuse	argileuse			
			argileux			sableux	sableux	sableux	sableux				l		
Observation de terrain	1		-	-	-	-	-	-	-	-	-	-			
Mesures PID			1,3	1,6	0,8	0,6	0,9	0	1,5	0,2	0,3	0,6		Gamme de valeurs	Cas d'anomalies
													seuils ISDI **	couramment	naturelles
Paramètres	Unité	LQ	S13 (0-1)	S13 (1-2)	S13 (3-4)	S15 (1-2)	S15 (2-3)	S3 (0-1)	S16 (0-1)	S19 (0.10-1)	S18 (0-1)	S18 (2-3)	**	rencontrées dans les sols *	modérées
														163 3013	
Matière sèche		0,01	89,1	87,7	87,2	80,4	89,1	78,5	87,5	81,7	80,7	83,6	/		
COT Carbone Organique Total		1000,00	11000	6600	2400	4600	2600	8800	5800	4600	4200	6100	30000	/	/
pH-H2O		0,1	8,5	8,4	8,9	8,4	8,6	8,4	9,2	8,7	9,0	8,7	/	/	/
ELEMENTS TRACES METALLIQUES (ETM)	ma m/lum NAC		10	11	12	20	30	0.0	6.4	7.5	4.1	2.5	,	1.25	20.00
Arsenic (As) Cadmium (Cd)	mg/kg MS mg/kg MS	0,1	0,2	11 <0,1	13 0,2	36 <0,1	20 <0,1	8,0 <0,1	6,4 <0,1	7,5 <0,1	4,1 <0,1	2,5 <0,2	/	1-25 0,05-0,45	30-60 0,7-2,0
Chrome (Cr)	mg/kg MS	0,1	22	23	21	52	32	12	16	11	2,8	3,6	/	10-90	90-150
Cuivre (cu)	mg/kg MS	0,2	17	9,0	8,5	17	8,2	3,9	7,5	2,7	4,2	2,6	/	2-20	20-62
Mercure (Hg)	mg/kg MS	0,05	0,06	<0,05	<0,05	<0,05	<0,05	0,06	<0,05	<0,05	<0,05	<0,05	/	0,02-0,2	0,15-2,3
Nickel (Ni)	mg/kg MS	0,5	14	13	13	31	18	8,2	9,6	6,8	3,0	2,7	/	9-50	60-130
Plomb (Pb)	mg/kg MS	0,5	37	19	18	29	16	9,7	17	5,0	1,8	2,0	/	2-60	60-90
Zinc (Zn)	mg/kg MS	1	74	43	53	81	45	21	29	15	4,6	5,3	/	10-100	100-250
COMPOSES AROMATIQUES VOLATILS (BTEX)	ma/l-= 140	0.05	<0.0F0	ZO 050	20.0F0	AD 050	ZO 050	ZO 050	20.0E0	20.0F0	-0.0F0	ZO 050	,	,	,
Benzène Toluène	mg/kg MS mg/kg MS	0,05	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	/	/	/
Ethylbenzène	mg/kg MS	0,05	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	/	/	/
m,p-Xylène	mg/kg MS	0,1	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	/	/	/
o-Xylène	mg/kg MS	0,05	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	/	/	/
Somme Xylènes	mg/kg MS	-	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	/	/	/
BTX total	mg/kg MS	-	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	6	/	/
HYDROCARBURES TOTAUX (HCT)															-
Fraction aliphatique C5-C6	mg/kg MS	0,2	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20		/	/
Fraction C5-C10 Fraction >C6-C8	mg/kg MS mg/kg MS	0,4	<1,0 <0,40	<1,0 <0,40	<1,0 <0,40	<1,0 <0,40	<1,0 <0,40	<1,0 <0,40	<1,0 <0,40	<1,0 <0,40	<1,0 <0,40	<1,0 <0,40	/	/	/
Fraction C8-C10	mg/kg MS	0,4	<0,40	<0,40	<0,40	<0,40	<0,40	<0,40	<0,40	<0,40	<0,40	<0,40	/	/	/
Fraction aliphatique >C6-C8	mg/kg MS	0,2	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	/	/	/
Fraction aromatique >C6-C8	mg/kg MS	0,2	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	/	/	/
Fraction aliphatique >C8-C10	mg/kg MS	0,2	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	/	/	/
Fraction aromatique >C8-C10	mg/kg MS	0,2	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	/	/	/
Fraction C10-C12	mg/kg MS	4	<4,0	<4,0	<4,0	<4,0	<4,0	<4,0	<4,0	<4,0	<4,0	<4,0	/	/	/
Fraction C12-C16 Fraction C16-C20	mg/kg MS mg/kg MS	2	<4,0 3,9	<4,0 <2,0	<4,0 <2,0	<4,0 <2,0	<4,0 <2,0	<4,0 6,4	<4,0 <2,0	<4,0 <2,0	<4,0 <2,0	<4,0 <2,0	/	/	/
Fraction C20-C24	mg/kg MS	2	6,5	<2,0	<2,0	<2,0	<2,0	5,9	<2,0	<2,0	<2,0	<2,0	/	/	/
Fraction C24-C28	mg/kg MS	2	8,6	<2,0	2,8	<2,0	<2,0	9,7	<2,0	<2,0	<2,0	<2,0	/	/	/
Fraction C28-C32	mg/kg MS	2	12	<2,0	3,8	<2,0	<2,0	9,9	<2,0	<2,0	<2,0	<2,0	/	/	/
Fraction C32-C36	mg/kg MS	2	9,2	<2,0	3,4	<2,0	<2,0	7,6	<2,0	<2,0	<2,0	<2,0	/	/	/
Fraction C36-C40	mg/kg MS	2	3,3	<2,0	2,4	<2,0	<2,0	4,3	<2,0	<2,0	<2,0	<2,0	/	/	/
Hydrocarbures totaux C10-C40	mg/kg MS	20	45,6	<20,0	<20,0	<20,0	<20,0	47,9	<20,0	<20,0	<20,0	<20,0	500	/	/
HYDROCARBURES AROMATIQUES POLYCYCLIC Naphtalène	mg/kg MS	0,05	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	1	0,15	/
Acénaphtylène	mg/kg MS	0,05	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	/	/	/
Acénaphtène	mg/kg MS	0,05	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	/	/	/
Fluorène	mg/kg MS	0,05	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	/	/	/
Phénanthrène	mg/kg MS	0,05	0,18	<0,050	<0,050	<0,050	<0,050	0,68	<0,050	<0,050	<0,050	<0,050	/	/	/
Anthracène	mg/kg MS	0,05	<0,050	<0,050	<0,050	<0,050	<0,050	0,10	<0,050	<0,050	<0,050	<0,050	/	/	/
Fluoranthène	mg/kg MS	0,05	0,43	<0,050	<0,050	<0,050	<0,050	0,92	<0,050	<0,050	<0,050	<0,050	/,	/	/
Pyrène Benzo(a)anthracène	mg/kg MS mg/kg MS	0,05	0,34 0,21	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	0,79 0,41	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	<0,050 <0,050	/	/	/
Chrysène	mg/kg MS	0,05	0,21	<0,050	<0,050	<0,050	<0,050	0,41	<0,050	<0,050	<0,050	<0,050	/	/	/
Benzo(b)fluoranthène	mg/kg MS	0,05	0,21	<0,050	<0,050	<0,050	<0,050	0,45	<0,050	<0,050	<0,050	<0,050	/	/	,
Benzo(k)fluoranthène	mg/kg MS	0,05	0,12	<0,050	<0,050	<0,050	<0,050	0,23	<0,050	<0,050	<0,050	<0,050	/	/	/
Benzo(a)pyrène	mg/kg MS	0,05	0,27	<0,050	<0,050	<0,050	<0,050	0,47	<0,050	<0,050	<0,050	<0,050	/	/	/
Dibenzo(a,h)anthracène	mg/kg MS	0,05	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	/	/	/
Benzo(g,h,i)pérylène	mg/kg MS	0,05	0,16	<0,050	<0,050	<0,050	<0,050	0,29	<0,050	<0,050	<0,050	<0,050	/,	/,	/
Indéno(1,2,3-cd)pyrène HAP (6 Borneff) - somme	mg/kg MS mg/kg MS	0,05	0,20 1,39	<0,050 n.d.	<0,050 n.d.	<0,050 n.d.	<0,050 n.d.	0,36 2,72	<0,050 n.d.	<0,050 n.d.	<0,050 n.d.	<0,050 n.d.		/	/
Somme HAP (VROM)	mg/kg MS	-	1,39	n.d.	n.d.	n.d.	n.d.	3,93	n.d.	n.d.	n.d.	n.d.			
HAP (EPA) - somme	mg/kg MS	-	2,32	n.d.	n.d.	n.d.	n.d.	5,17	n.d.	n.d.	n.d.	n.d.	50	25	/
*			•												

Tableau 26. Résultats analytiques sur les sols brut

Zone à risque	Zone à risque Sondage				Groupe électrogène - CT2 Fosse de reprise des eaux tra usées - CT2 e			Ancien transformat eur - CT2	Parking employés - CT2	Ancienne zone d'enfouissement de déchets			
Sondage				S13		S15		S3	S16	S19	S:	18	
Profondeur sondage (m)			5		:	3	2	2	4	4	4	
Lithologie	Lithologie			Argile sableuse	Marne très argileuse	Remblais argilo- sableux	Remblais argilo- sableux	Remblais argilo- sableux	Remblais argilo- sableux	Marne argileuse	Argile marneuse	Marne argileuse	
Observation de terrai	in		-	-	-	-	-	-	-	-	-	-	
Mesures PID			1,3	1,6	0,8	0,6	0,9	0	1,5	0,2	0,3	0,6	
Paramètres	Unité	LQ	S13 (0-1)	S13 (1-2)	S13 (3-4)	S15 (1-2)	S15 (2-3)	S3 (0-1)	S16 (0-1)	S19 (0.10-1)	S18 (0-1)	S18 (2-3)	seuils ISDI **
COMPOSES ORGANO HALOGENES VOLATILS	(COHV)												
Tétrachloroéthylène	mg/kg MS	0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	/
Trichloroéthylène	mg/kg MS	0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	/
cis-1,2-Dichloroéthène	mg/kg MS	0,025	<0,025	<0,025	<0,025	<0,025	<0,025	<0,025	<0,025	<0,025	<0,025	<0,025	/
Trans-1,2-Dichloroéthylène	mg/kg MS	0,025	<0,025	<0,025	<0,025	<0,025	<0,025	<0,025	<0,025	<0,025	<0,025	<0,025	/
Somme cis/trans-1,2-Dichloroéthylènes	mg/kg MS	-	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	/
1,1-Dichloroéthylène	mg/kg MS	0,1	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	/
Chlorure de Vinyle	mg/kg MS	0,02	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	/
1,1,2-Trichloroéthane	mg/kg MS	0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	/
1,1,1-Trichloroéthane	mg/kg MS	0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	/
1,2-Dichloroéthane	mg/kg MS	0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	/
1,1-Dichloroéthane	mg/kg MS	0,1	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	/
Tétrachlorométhane	mg/kg MS	0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	/
Trichlorométhane	mg/kg MS	0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	/
Dichlorométhane	mg/kg MS	0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	/
	,												
PCB (28)	mg/kg Ms	0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	/
PCB (52)	mg/kg Ms	0,001	<0,001	<0,001	<0,001	<0,001	<0,001	0,001	<0,001	<0,001	<0,001	<0,001	/
PCB (101)	mg/kg Ms	0,001	0,001	<0,001	<0,001	<0,001	<0,001	0,005	<0,001	<0,001	<0,001	<0,001	/
PCB (118)	mg/kg Ms	0,001	0,001	<0,001	<0,001	<0,001	<0,001	0,003	<0,001	<0,001	<0,001	<0,001	/
PCB (138)	mg/kg Ms	0,001	0,003	<0,001	0,002	<0,001	<0,001	0,013	<0,001	<0,001	<0,001	<0,001	/
PCB (153)	mg/kg Ms	0,001	0,002	<0,001	0,002	<0,001	<0,001	0,014	<0,001	<0,001	<0,001	<0,001	/
PCB (180)	mg/kg Ms	0,001	0,001	<0,001	0,001	<0,001	<0,001	0,010	<0,001	<0,001	<0,001	<0,001	/
Somme 7 PCB	mg/kg Ms	-	0,0080	n.d.	0,0050	n.d.	n.d.	0,046	n.d.	n.d.	n.d.	n.d.	1

10.4.3 Interprétation de l'état du milieu sol

L'interprétation de l'état des milieux a été réalisée pour chaque zone investiguée. Elle met en évidence :

Zone du bâtiment CT1

→ Les sondages ne présentent pas d'anomalies significatives pour les composés recherchés.

Zone du bâtiment B1-B2

- → La présence d'arsenic et de cuivre à des teneurs mesurées dans la gamme des anomalies naturelle modérée en S2 (0-1) avec des concentrations respectives de 35 et 20 mg/kg MS. S2 est implanté au droit de l'ancien atelier de charge d'accumulateurs et proche d'un ancien transformateur PCB.
- → La présence de traces de PCB au droit du sondage S1 de 0 à 1 m de profondeur (0,95 mg/kg) à une teneur supérieure aux autres valeurs mesurées dans les sols et proche du seuil ISDI (1 mg/kg). L'échantillon sous-jacent S1(1-2) ne présente pas de teneur significative (0,27 mg/kg).

Zone du bâtiment CT2

→ La présence d'arsenic à une teneur comprise dans la gamme des anomalies naturelle modérée a en S15 (1-2) au droit la fosse de reprise des eaux usées avec une concentration de 36 mg/kg MS.

Zone du bâtiment PVL

→ Les sondages ne présentent pas d'anomalies significatives pour les composés recherchés sur brut.

Ancienne zone d'enfouissement de déchets

→ Les sondages ne présentent pas d'anomalies significatives pour les composés recherchés.

Caractérisation du site

Des anomalies faibles à modérées sont observées en métaux (arsenic et cuivre) sur deux sondages : S2 et S15 en surface et entre 1 et 2 m de profondeur.

Les résultats d'analyses du présent diagnostic sont cohérents avec les résultats du diagnostic d'ANTEA réalisé en 2001

La figure en page suivante présente la cartographie des résultats obtenus sur les sols.

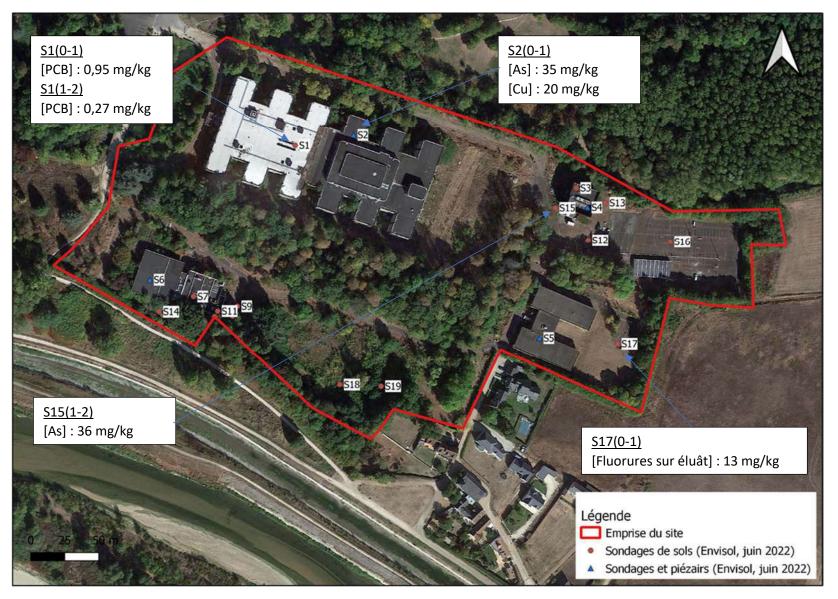


Figure 22. Cartographie des résultats obtenus sur les sols (brut et éluat)

10.5 GESTION DES TERRES EXCAVEES

Pour appréhender l'admissibilité des terres destinées à être évacuées potentiellement dans une installation de stockage de déchets inertes (ISDI), les teneurs mesurées dans les sols sont comparées aux seuils réglementaires relatifs à l'admission en ISDI issus de l'Annexe II de l'arrêté Ministériel du 12/12/2014.

Le tableau suivant présente les résultats sur lixiviat. Les données sur brut sont présentées dans les tableaux 21 à 23.

Zone du bâtiment PVL

→ Une teneur supérieure aux critères ISDI est mesurée sur l'échantillon S17(0-1) en fluorures sur éluat (13 mg/kg).

Autres sondages

→ Tous les autres sondages ne présentent pas de dépassement des critères ISSID.

En cas de travaux d'excavation et d'élimination des terres hors site, 1 échantillon analysé lors de cette étude est non conformes aux critères d'acceptation en ISDI.

Tableau 27 : Résultats analytiques sur les sols sur éluât (1/2)

Zone à	à risque			nsformateur T1		ateur + chaudière - CT1	bac à graisses - CT1	Anciennes cu	ves FOD - CT1	Anciennes cu	ives FOD - CT1	Anciennes cu	ves FOD- CT1	Ancien transformateur - B1	Ancien transformateur et atelier de charge d'accumulateur - B2	Ancien transformateur - PVL	
Son	dage			S6	S	20	S14	S	9		S8	S:	10	S1	S2	S5	
Profondeur	sondage (m)			2		 2	3				5		 5	2	2	2	
	ologie		Remblais sable grossier	Argile sableuse	Sable à silex	Argile sableuse	Argile sableuse	Argile sableuse	Marne	Sable légèrement argileux	Argile sableuse	Sable argileux	Argile sableuse	Remblai argilo- sableux	Remblai argileux	Remblais sablo- argileux	
Observatio	on de terrain		-	-	-	-	-	-	-	-	passées noirâtres	-	-	-	Charbon	-	
Mesu	res PID		0,2	0	8	2,3	0,1	0,1	0,8	0,4	1,4	4,1	3,6	0	0	0,2	
Paramètres	Unité	LQ	S6 (0.08-0.28)	S6 (0.28-1)	S20 (0.4-1.3)	S20 (1.3-2)	S14 (1-2)	S9 (1-2)	S9 (3.5-4.5)	S8 (0.05-1)	S8 (3-4)	S10 (0.05-1)	S10 (4-5)	S1 (0-1)	S2 (0-1)	S5 (0-1)	seuils ISDI*
PARAMETRES GENERAUX																	
L/S cumulé	mg/kg MS	0,1	10	10	10	10	10	10	10	10	10	10	10	10	10	10	/
рН	mg/kg MS	0	8,4	8,1	11,6	8,5	8,6	8,9	8,7	8,2	9,1	8,5	9	8,1	8,1	8,2	/
Température	mg/kg MS	0	20,8	19,7	20,7	20,5	20	20,2	20,3	20,9	20,2	19,9	20,2	20,8	20,6	20,3	/
Conductivité électrique	mg/kg MS	5	95,8	280	820	130	69,4	83,5	77	110	100	120	140	250	56,6	140	/
Fraction soluble cumulé**	mg/kg MS	1000	0 - 1000	2300	4000	0 - 1000	0 - 1000	0 - 1000	0 - 1000	0 - 1000	0 - 1000	0 - 1000	1300	1500	0 - 1000	0 - 1000	4000
COT cumulé	mg/kg MS	10	12	12	45	28	14	0 - 10	33	33	33	22	27	25	0 - 10	30	500
Indice phénol cumulé	mg/kg MS	0,1	0 - 0,1	0 - 0,1	0 - 0,1	0 - 0,1	0 - 0,1	0 - 0,1	0 - 0,1	0 - 0,1	0 - 0,1	0 - 0,1	0 - 0,1	0 - 0,1	0 - 0,1	0 - 0,1	1
Fluorures cumulé	mg/kg MS	1	3	5	2	7	5	3	4	4	5	3	7	6	3	3	10
Chlorures cumulé**	mg/kg MS	1	32	150	510	12	7	8	28	50	40	42	9	8	7	11	800
Sulfates cumulé**	mg/kg MS	50	120	430	180	130	0 - 50	68	56	71	71	94	260	450	0 - 50	0 - 50	1000
ELEMENTS TRACES METALLIQUES	S																
Antimoine cumulé	mg/kg MS	0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0,06
Arsenic cumulé	mg/kg MS	0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0,07	0 - 0,05	0,07	0 - 0,05	0,11	0 - 0,05	0 - 0,05	0 - 0,05	0,5
Baryum cumulé	mg/kg MS	0,1	0,13	0,34	0,16	0,18	0,1	0,11	0 - 0,1	0,1	0 - 0,1	0,12	0 - 0,1	0,3	0 - 0,1	0,21	20
Cadmium cumulé	mg/kg MS	0,001	0 - 0,001	0 - 0,001	0 - 0,001	0 - 0,001	0 - 0,001	0 - 0,001	0 - 0,001	0 - 0,001	0 - 0,001	0,001	0 - 0,001	0 - 0,001	0 - 0,001	0 - 0,001	0,04
Chrome cumulé	mg/kg MS	0,02	0,05	0 - 0,02	0 - 0,02	0 - 0,02	0 - 0,02	0 - 0,02	0 - 0,02	0 - 0,02	0 - 0,02	0 - 0,02	0 - 0,02	0 - 0,02	0 - 0,02	0 - 0,02	0,5
Cuivre cumulé	mg/kg MS	0,02	0 - 0,02	0,04	0,07	0,05	0 - 0,02	0 - 0,02	0,03	0,03	0,08	0,03	0,03	0 - 0,02	0 - 0,02	0,08	2
Mercure cumulé	mg/kg MS	0,0003	0 - 0,0003	0 - 0,0003	0,0006	0 - 0,0003	0 - 0,0003	0 - 0,0003	0 - 0,0003	0 - 0,0003	0,0007	0 - 0,0003	0,0004	0 - 0,0003	0 - 0,0003	0 - 0,0003	0,01
Molybdène cumulé	mg/kg MS	0,05	0 - 0,05	0 - 0,05	0,05	0,06	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0,07	0,09	0 - 0,05	0 - 0,05	0 - 0,05	0,5
Nickel cumulé	mg/kg MS	0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0,4
Plomb cumulé	mg/kg MS	0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0,5
Zinc cumulé	mg/kg MS	0,02	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	4
Sélénium cumulé	mg/kg MS	0,05	-	0,04	0 - 0,02	0 - 0,02	0 - 0,02	0 - 0,02	0 - 0,02	0 - 0,02	0 - 0,02	0 - 0,02	0,02	0 - 0,02	0 - 0,02	0 - 0,02	0,1
CONFOR	MITE ISDI		OUI	OUI	OUI	OUI	OUI	OUI	OUI	OUI	OUI	OUI	OUI	OUI	OUI	OUI	

Gras : Composé présent en teneur supérieur au seuil de détection du laboratoire

* ISDI : Installation de stockage de déchets inertes par décret du 12/12/2014

*Si le déchet ne respecte pas au moins une des valeurs fixées pour le chlorure, le sulfate ou la fraction soluble, le déchet peut être encore jugé conforme aux critères d'admission s'il respecte soit les valeurs associées au chlorure et au sulfate,

/ : Pas de valeurs de référence

Concentrations supérieures aux critères d'acceptation en ISDI (selon arrêté du 12 décembre 2014)

Etude historique et documentaire et diagnostic de pollution des sols

Page 76

Tableau 28. Résultats analytiques sur les sols sur éluât (1/2)

Zone à risc	jue		Parking visiteurs - PVL	Ancien transformateur - CT2	Cuve d'acide sulf C	iurique et huiles - T2	Gre	oupe électrogène - (CT2	Fosse de reprise C'	des eaux usées - T2	Ancien transformateur - CT2	Parking employés CT2	Ancienne zo	ne d'enfouissemer	nt de déchets	
Sondage	•		S17	S4	S:	12		S13		S	15	S3	S16	S19	S	18	i
Profondeur sono	dage (m)		2	2		5		5			3	2	2	4		4	l
	,		-											'			1
Lithologi	е		Remblais argileux	Remblais argilo- sableux	Remblai sablo- argileux	Sable argileux	Remblais sablo- argileux	Argile sableuse	Marne très argileuse	Remblais argilo- sableux	Remblais argilo- sableux	Remblais argilo- sableux	Remblais argilo- sableux	Marne argileuse	Argile marneuse	Marne argileuse	
Observation de	terrain		-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Mesures P	D		0,4	0,2	1,9	0,8	1,3	1,6	0,8	0,6	0,9	0	1,5	0,2	0,3	0,6	İ
Paramètres	Unité	LQ	S17 (0-1)	S4 (0-1)	S12 (1-2)	S12 (3-4)	S13 (0-1)	S13 (1-2)	S13 (3-4)	S15 (1-2)	S15 (2-3)	S3 (0-1)	S16 (0-1)	S19 (0.10-1)	S18 (0-1)	S18 (2-3)	seuils ISDI*
PARAMETRES GENERAUX																	
L/S cumulé	mg/kg MS	0,1	10	10	10	10	10	10	10	10	10	10	10	10	10	10	
pH	mg/kg MS	0	10,2	8,7	8,8	8,1	8,1	8,6	8,5	9,6	8,3	9	9,8	8,9	8	8,1	/
Température	mg/kg MS	0	19,9	19,9	19,9	21,5	21	20,3	20,5	20,3	19,9	20,3	19,9	20,9	20,7	19,8	/
Conductivité électrique	mg/kg MS	5	250	120	97	160	150	99	200	110	81,3	78	320	110	150	72,1	
Fraction soluble cumulé**	mg/kg MS	1000	2200	0 - 1000	0 - 1000	0 - 1000	0 - 1000	0 - 1000	1300	0 - 1000	0 - 1000	0 - 1000	3200	0 - 1000	1000	0 - 1000	4000
COT cumulé	mg/kg MS	10	38	15	11	37	18	0 - 10	15	140	15	11	88	15	0 - 10	16	500
Indice phénol cumulé	mg/kg MS	0,1	0 - 0,1	0 - 0,1	0 - 0,1	0 - 0,1	0 - 0,1	0 - 0,1	0 - 0,1	0 - 0,1	0 - 0,1	0 - 0,1	0 - 0,1	0 - 0,1	0 - 0,1	0 - 0,1	1
Fluorures cumulé	mg/kg MS	1	13	3	2	6	4	8	7	4	3	2	5	8	9	2	10
Chlorures cumulé**	mg/kg MS	1	21	11	11	12	11	8	9	12	11	14	720	7	9	9	800
Sulfates cumulé**	mg/kg MS	50	650	190	110	210	140	74	440	120	60	50	210	120	120	0 - 50	1000
ELEMENTS TRACES METALLIQUES	<u> </u>																
Antimoine cumulé	mg/kg MS	0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0,06
Arsenic cumulé	mg/kg MS	0,05	0,18	0,06	0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0,34	0 - 0,05	0 - 0,05	0,44	0 - 0,05	0 - 0,05	0 - 0,05	0,5
Baryum cumulé	mg/kg MS	0,1	0 - 0,1	0 - 0,1	0,12	0,35	0,26	0,15	0,21	0,12	0 - 0,1	0 - 0,1	0,28	0,15	0,21	0 - 0,1	20
Cadmium cumulé	mg/kg MS	0,001	0 - 0,001	0 - 0,001	0 - 0,001	0 - 0,001	0 - 0,001	0 - 0,001	0 - 0,001	0 - 0,001	0 - 0,001	0 - 0,001	0 - 0,001	0 - 0,001	0 - 0,001	0 - 0,001	0,04
Chrome cumulé	mg/kg MS	0,02	0,02	0 - 0,02	0 - 0,02	0 - 0,02	0,02	0 - 0,02	0,02	0 - 0,02	0 - 0,02	0 - 0,02	0 - 0,02	0 - 0,02	0 - 0,02	0 - 0,02	0,5
Cuivre cumulé	mg/kg MS	0,02	0,08	0,03	0,04	0,09	0,05	0 - 0,02	0,03	0,35	0 - 0,02	0 - 0,02	0,17	0,02	0 - 0,02	0,03	2
Mercure cumulé	mg/kg MS	0,0003	0 - 0,0003	0 - 0,0003	0 - 0,0003	0 - 0,0003	0 - 0,0003	0 - 0,0003	0 - 0,0003	0 - 0,0003	0 - 0,0003	0 - 0,0003	0 - 0,0003	0 - 0,0003	0 - 0,0003	0 - 0,0003	0,01
Molybdène cumulé	mg/kg MS	0,05	0,17	0,07	0,14	0,09	0 - 0,05	0,46	0,1	0,08	0 - 0,05	0 - 0,05	0,14	0,08	0,06	0 - 0,05	0,5
Nickel cumulé	mg/kg MS	0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0,08	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0,4
Plomb cumulé	mg/kg MS	0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0,5
Zinc cumulé	mg/kg MS	0,02	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0,06	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	4
Sélénium cumulé	mg/kg MS	0,05	0 - 0,02	0 - 0,02	0,02	0,03	0,03	0 - 0,02	0 - 0,02	0,02	0 - 0,02	0 - 0,02	0 - 0,02	0 - 0,02	0 - 0,02	0,05	0,1
CONFORMITI	ISDI		NON	OUI	OUI	OUI	OUI	OUI	OUI	OUI	OUI	OUI	OUI	OUI	OUI	OUI	ı

Gras : Composé présent en teneur supérieur au seuil de détection du laboratoire

* ISDI : Installation de stockage de déchets inertes par décret du 12/12/2014

*Si le déchet ne respecte pas au moins une des valeurs fixées pour le chlorure, le sulfate ou la fraction soluble, le déchet peut être encore jugé conforme aux critères d'admission s'il respecte soit les valeurs associées au chlorure et au sulfate,

/ : Pas de valeurs de référenc

Concentrations supérieures aux critères d'acceptation en ISDI (selon arrêté du 12 décembre 2014)

Etude historique et documentaire et diagnostic de pollution des sols

Page 77

La figure en page suivante présente la cartographie des résultats obtenus sur les sols.

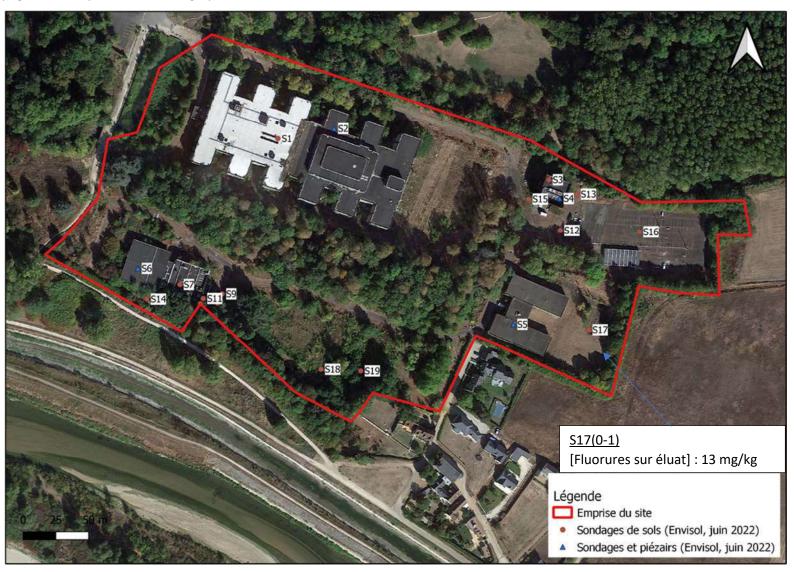


Figure 23. Cartographie des résultats selon critère ISDI

10.6 Investigations des gaz du sol - A230

10.6.1 Réalisation des piézairs

Le tableau suivant présente les éléments liés à la réalisation des piézairs :

Tableau 29 : Réalisation des piézairs.

Date de réalisation	09/06/2022				
Entreprise de forage	ATME				
Méthode de forage	Méthode de forage : tarière mécanique et carottier portatif pour le Pza 6				
Nombre d'ouvrage	piézairs				
Lithologie	De manière générale la lithologie rencontrée est la suivante : O à 1 m : remblais anthropiques (présence de dalle en béton (Pza 6 ou remblais argilo-sableux); 1 m à1,5 m : Argile sableuse. Les coupes lithologiques et techniques des piézairs sont présentées en Annexe 7 .				
Indices organoleptiques et PID	Aucun indice organoleptique n'a été rencontré.				
Gestion des cuttings	Les cuttings excédentaires et exempts de singularités organoleptiques ont été laissés sur site.				
Géoréférencement	L'ensemble des piézairs a été géoréférencé à l'aide d'une antenne GPS. Le système de coordonnées est le Lambert 93.				

10.6.2 Réseau de piézairs

Le tableau ci-dessous présente les caractéristiques des piézairs qui constituent le réseau global (piézairs posés lors de ces investigations).

Tableau 30 : Informations techniques relatives aux piézairs

Zone source ciblée	Nom	Revêtement de surface	Equipement	Hauteur du tube crépiné (m)	Lithologie au niveau de la crépine
CT1 - transformateur	Pza 6	Dalle en béton de 8 cm d'épaisseur		Entre 1 et 1,5 m	Argile sableuse marron
B2 – transformateur et atelier de charge d'accumulateurs	Pza 2	Remblais	 Tube PEHD 1 m de plein 0.5 m de crépine avec fente de 0,5 mm Massif filtrant calibrés 2-4 mm 20 cm au-dessus de la crépine 	Entre 1 et 1,5 m	Remblai argileux marron compact
CT2 - transformateur	Pza 4	Remblais	 Bouchon de sobranite Ciment en surface (20 cm) Bouche à clef ras de sol 	Entre 1 et 1,5 m	Argile faiblement sableuse marron
PVL - transformateur	Pza 5	Remblais		Entre 1 et 1,5 m	Remblai de marne et d'argile sableuse par passes

10.6.3 Prélèvements des gaz du sol et programme analytique

Le tableau suivant présente les prélèvements réalisés sur les gaz des sols.

Tableau 31 : Prélèvements et échantillonnage des gaz des sols

Date de prélèvement	09/06/2022 soit 24 h après leur installation sauf pour le Pza 6 qui a été prélevé le 08/06/2022 soit 24h après son installation.
Ordre de prélèvement	Les piézairs ont été prélevés dans l'ordre suivant : Pza 6, Pza 2, Pza 4 et Pza 5
Constats terrain	Aucun piézair ne comportait d'eau en fond d'ouvrage.
Purge	Avant la réalisation du prélèvement, le piézair est purgé à l'aide d'un PID à un débit de 0,5 l/min. Le PID est relié à la vanne du piézair par un tube en téflon. Le volume de purge est fixé à 5 fois le volume mort (volume de l'ouvrage) ou jusqu'à stabilisation de la valeur PID.
Protocole d'échantillonnage Sac Tedlar	Les prélèvements par aspiration naturels sur sac tedlar de 2 l ont été effectués. Le sac tedlar est introduit à l'intérieur d'un poumon, préalablement mis en dépression. Lors de l'ouverture de la vanne du poumon, le sac se remplit en gaz du sol en quelques minutes. Les conditions météorologiques sont notifiées au moment du prélèvement. Les fiches de prélèvements des piézairs sont présentées en Annexe 8.
Conditionnement, conservation, transport et analyses des échantillons	L'identification des échantillons a été réalisée via un étiquetage adapté, sans utilisation de feutre et colle pouvant entrainer des contaminations croisées. Les échantillons ont ensuite été systématiquement conservés à l'abri de la lumière et de la chaleur dès le prélèvement. Ils ont été transférés rapidement par transporteur express vers le laboratoire (sous 24 h) en glacières réfrigérées (<5°C).
Programme d'analyse	Les analyses ont été réalisées par EXPLORAIR. Les analyses ont porté sur : HC volatils, BTEX-N et COHV

Conditions météorologiques

La variation des conditions météorologiques est présentée dans le tableau ci-dessous. De plus, les dernières pluies dataient du 08/06/2022 au matin.

Tableau 32 : Prélèvements et échantillonnage des gaz des sols

	Unité	Intérieur CT1	Extérieur			
	Office	interieur C11	Min	Max		
Température	°C	22.6	20.6	22.3		
Pression atmosphérique	Pa	995.7	1005.1	1005.9		
Humidité atmosphérique	%	62.3	50.4	59.9		
Vitesse du vent	m/s	0	0.7	2.5		

Paramètres de prélèvement et volumes prélevés

Les paramètres de prélèvement par piézair sont retranscrits dans le tableau ci-dessous.

Tableau 33 : Paramètres de prélèvement et volumes prélevés.

Ouvrages	Débit moyen (I/min)	Temps de prélèvement (min)	Volume prélevé moyen (I)		
Tous	2	1	2		

10.6.4 Résultats analytiques

Valeurs de référence

Il n'existe pas de valeurs guides dans les gaz du sol.

Résultats d'analyses

Les bordereaux d'analyse du laboratoire sont fournis dans l'Annexe 9.

Le tableau suivant présente les résultats de la campagne.

Tableau 34. Résultats analytiques des gaz du sol.

		Pza 2	Pza 4	Pza 5	Pza 6
Unités	Nb de C	μg/m ³	μg/m ³	μg/m ³	μg/m ³
Mesures PID en ppm fin de purge	/	0	0,7	0,7	0,5
Naphthalène	/	< 10	< 10	< 10	< 10
BTEX					
Benzène		< 10	< 10	< 10	< 10
Toluène		37	136	40	78
Ethylbenzène		< 10	33	10	14
m,p-Xylènes		30	185	39	51
o-Xylène		12	65	15	18
Somme BTEX		80	418	103	161
COHV					
1,1-Dichloroéthène	/	< 10	< 10	< 10	< 10
Chlorure de Vinyle	/	< 10	17	< 10	< 10
Dichlorométhane	/	< 10	< 10	< 10	< 10
Trans-1,2-Dichloroéthylène	/	< 10	< 10	< 10	< 10
Cis-1,2 Dichloroéthylène	1	< 10	< 10	< 10	< 10
1,2-Dichloroéthane	/	< 10	< 10	< 10	< 10
1,1,1-Trichloroéthane	/	< 10	< 10	< 10	< 10
Tétrachlorométhane	/	< 10	< 10	< 10	< 10
Trichloroéthylène	/	< 10	< 10	< 10	32
Tetrachloroéthylène	1	< 10	< 10	< 10	< 10
Chloroforme	/	< 10	< 10	< 10	< 10
1,1-Dichloroéthane	1	< 10	< 10	< 10	< 10
1,1,2-Trichloroéthane	/	< 10	< 10	< 10	< 10
Somme des COHV		< 10	17	< 10	32
Hydrocarbures volatils					
Somme des hydrocarbures aliphatiques		613	1089	879	857
Hydrocarbures aliphatiques >C5-C6	C5	158	161	135	164
Hydrocarbures aliphatiques >C6-C8	C6-C7	109	111	80	74
Hydrocarbures aliphatiques >C8-C10	C8-C9	41	70	42	50
Hydrocarbures aliphatiques >C10-C12	C10-C11	221	495	398	373
Hydrocarbures aliphatiques >C12-C16	C12-C15	84	253	223	196
Somme des hydrocarbures aromatiques		109	515	135	189
Hydrocarbures aromatiques >C6-C7	C6	< 10	< 10	< 10	< 10
Hydrocarbures aromatiques >C7-C8	C7	37	136	40	78
Hydrocarbures aromatiques >C8-C10	C8-C9	71	379	95	111
Hydrocarbures aromatiques >C10-C12	C10-C11	< 10	< 10	< 10	< 10
Hydrocarbures aromatiques >C12-C16	C12-C15	< 10	< 10	< 10	< 10

10.6.5 Interprétation de l'état du milieu gaz des sols

On rappelle que de nombreux paramètres peuvent influencer le dégazage des composés volatils et donc les concentrations dans les gaz du sol (conditions météorologiques, saisons, revêtement, chauffage, aération etc..). Il convient de réaliser plusieurs campagnes de prélèvement dans des conditions différentes pour appréhender sa variabilité et les représentativités des résultats.

Il est à noter que les piézairs montrent tous des concentrations en BTEX (toluène et xylènes essentiellement), TPH aromatiques et TPH aliphatiques. Tandis que le naphtalène n'est jamais détecté et les COHV ne sont détectés qu'au niveau des piézairs Pza4 (ancien transformateur CT2) et Pza6 (zone du transformateur du bâtiment CT1). Le Pza4 présente, pour les COHV, une concentration unique en chlorure de vinyle (17 μ g/m³) et le Pza6, une concentration unique en trichloréthylène (32 μ g/m³).

Les Pza2, Pza5 et Pza6 montrent des concentrations globalement du même ordre de grandeur en TPH et BTEX, tandis que le Pza4 montre les concentrations maximales avec les concentrations suivantes :

- En TPH aliphatiques : une somme de 1089 μg/m³ ;
- En BTEX : une somme de 418 μg/m³;
- En TPH aromatiques : une somme de 515 μg/m³.

Concernant les BTEX et les TPH aromatiques : les concentrations étant proches et les TPH aromatiques comptabilisant les BTEX dans la méthode d'analyses, il est possible de considérer que la totalité des TPH aromatiques retrouvés correspondent aux BTEX. Aucune source sol en BTEX n'a été identifiée lors des investigations, ni d'activités historiques pouvant être responsable d'un bruit de fond sur l'ensemble du site.

La figure en page suivante présente la cartographie des résultats obtenus sur les gaz du sol.



Figure 24. Cartographie des résultats obtenus sur les gaz du sol

11 SYNTHESE DE L'ETAT DES MILIEUX ET MISE A JOUR DU SCHEMA CONCEPTUEL

11.1 Synthèse de l'état des milieux

L'ensemble des données à disposition ainsi que les investigations de juin 2022 ont permis d'établir les éléments suivants :

Sols:

- → des anomalies faibles à modérées et localisées en métaux (arsenic et cuivre), non significatives d'impacts au niveau du bâtiment B2 (S2) et du bâtiment CT2 (S15);
- → une teneur notable en PCB ne dépassant pas le seuil ISDI au droit de l'ancien transformateur du bâtiment B1 (S1). Cette teneur est retrouvée sur l'échantillon de surface (0-1m) mais est cerné en profondeur par l'échantillon de 1 à 2 m, lequel présente une teneur moindre en PCB;
- → un dépassement de seuil ISDI en fluorure sur éluât au niveau du Parking visiteur PVL.

Gaz du sol:

- → Un bruit de fond est présent sur l'ensemble du site en TPH aliphatiques ;
- → Le piézair au droit de l'ancien transformateur du bâtiment CT2 (ayant accueilli des stockages d'huile, de fuel, d'essence, de white spirit, de trichloroéthylène) de présente globalement des concentrations supérieures aux autres piézairs du site notamment en BTEX et hydrocarbures et quelques traces de chlorures de vinyle.

11.2 Incertitudes

On peut catégoriser les incertitudes en 3 groupes :

- → les incertitudes intrinsèques de l'étude relatives aux choix portés dans la conception des protocoles d'investigations (analyses, matériel, échantillonnage etc..). Les moyens mis en œuvre ont été jugés pour assurer une représentativité adaptée à l'objectif fixé. Une description des incertitudes majeures est réalisée dans le tableau ci-dessous afin d'aider à une prise de recul sur l'interprétation des données.
- → les incertitudes stochastiques qui traduisent essentiellement une variabilité intrinsèque de la grandeur concernée (par exemple les variations dans le temps des concentrations dans les gaz du sol). Il est possible de mieux décrire ces incertitudes par l'obtention de données supplémentaires ;

Le tableau ci-dessous fait la synthèse de ces deux derniers groupes d'incertitudes. Une traduction de celles-ci sur l'état des connaissances et une proposition de modalités à mettre en œuvre pour les réduire ont été apportés.

Tableau 35. Incertitudes associées à l'étude et modalité de leur réduction

Milieux	Description	Incidences attendues sur connaissance état des milieu	Modalités de réduction/levée						
	Incertitudes intrinsèques à l'étude								
Sol, gaz du sol	Analyses laboratoires. Selon les essais laboratoires l'incertitude peut atteindre 30 %.	L'incertitude ne remet pas en cause les conclusions de l'étude.	-						
Sol	Représentativité des sondages. Ici dans l'étude 1 sondage / 2 000 m².	Le plan d'échantillonnage au jugement a été proportionné à l'objectif de l'étude qui était dans un premier diagnostic de lever le doute sur les zones potentiellement pollués.	-						
Sol	Protocole de prélèvement	Le protocole établit est optimisé pour éviter toute dégradation ou perte des polluants.	-						
	Incert	titudes stochastiques							
Gaz du sol	Variation dans le temps de l'échelle journalière à saisonnière	La campagne a été réalisée sur deux jours lors de conditions climatiques différentes permettant d'apprécier les variations de concentrations dans les gaz du sol.	Réaliser au minimum une campagne complémentaire en début de journée sur une autre saison.						
	Incer	titudes épistémiques							
Gaz du sol	Origine teneur détectée dans les sols	Des teneurs (HC, BTEX, VC) ont été détectées dans les gaz du sol sans lien avec les teneurs identifiées dans les sols	Réalisation de sondages complémentaire à proximité du CT2 et de piézair afin d'identifier l'origine de la problématique gaz du sol						

11.3 SCHEMA CONCEPTUEL

11.3.1 Principe

D'une manière générale, il doit permettre d'identifier, de caractériser et d'apprécier les relations entre .

- → les sources potentielles de substances dangereuses (nature, concentration, volume) ;
- → les voies de transfert qui correspondent aux voies, trajets ou autre chemin potentiels par lesquels des polluants ou des substances dangereuses peuvent être dispersés ou distribués depuis une source donnée de pollution ;
- → les récepteurs existants et/ou futurs devant être protégés, correspondant à tout ce qui est susceptible d'être influencé par l'exposition à des polluants, comme des personnes (par exemple, intrus, utilisateurs actuels et prévus, ouvriers du bâtiment), d'autres organismes ou des écosystèmes complets, milieux environnementaux ou construction artificielle.

Ainsi, on peut qualifier le risque par la présence concomitante d'une ou plusieurs sources, vecteurs et cibles (<u>Risque = f (Sources, Vecteurs/voies, Cibles/Récepteurs/Enjeux)</u>. Sur le plan sanitaire, les cibles sont alors potentiellement exposées aux polluants selon une ou plusieurs voies d'exposition (inhalation, ingestion et/ou contact cutané).

Il ne s'agit pas à ce stade de quantifier ce risque.

11.3.2 Principales propriétés des substances présentes

Les principales caractéristiques physico-chimiques des substances identifiées sur le site, influençant leur comportement (transfert) dans les milieux, sont les suivantes :

- → HCT C5-C10 : très volatils, solubles, moins denses que l'eau, faible potentiel d'adsorption sur les sols, faible potentiel de bioaccumulation dans les végétaux.
- → HCT C10-C40 : en fonction du nombre de carbone, des plus légers (C10) aux plus lourds (C40) : volatils à très peu volatils, moyennement solubles à très peu solubles, moins denses que l'eau, fort potentiel d'adsorption sur les sols, fort potentiel de bioaccumulation dans les végétaux.
- → BTEX : très volatils, solubles, moins denses que l'eau, faible potentiel d'adsorption sur les sols, faible potentiel de bioaccumulation dans les végétaux.
- → PCB : peu à très peu volatils, peu solubles, plus denses que l'eau, fort potentiel d'adsorption sur les sols, fort potentiel de bioaccumulation dans les végétaux.
- → COHV: très volatils, solubles, plus denses que l'eau, faible potentiel d'adsorption sur les sols, faible potentiel de bioaccumulation dans les végétaux.
- → Éléments Traces Métalliques : non volatils pour la plupart sauf le mercure élémentaire, solubles à non solubles en fonction de leur spéciation ou état et des conditions environnementales, potentiel d'adsorption dans les sols généralement fort, potentiel de bioaccumulation dans les végétaux fort.

11.3.3 Schéma conceptuel

Le schéma conceptuel a été construit sur la base l'usage futur du site. Il est présenté sous la forme d'un tableau.

L'usage futur du site est aujourd'hui encore en cours de discussion et un schéma conceptuel mixte a été considéré : jardins ornementaux avec zone de promenade (côté rivière) avec apport de terre, habitations et tertiaires (localisation non définie).

En définitive, l'usage projeté des lieux est de type sensible avec l'utilisation des terrains pour des activités impliquant des travailleurs, adultes et enfants.

Le schéma conceptuel met en évidence un transfert par volatilisation à partir des gaz du sol. Il existe donc une voie d'exposition par inhalation pour les futurs usagers adultes et enfants.

Tableau 36 : Schéma conceptuel. Tableau 37. Schéma conceptuel initial.

	SCHEMA CONCEPTUEL							
		USAGE FUTU	IR.					
Pi	rojet / Aménagement		Cibles/enjeux / sensibilité					
Sur site	Habitations et des act Jardins ornementaux	et/ou zone de on défini à ce jour, usage	Travailleurs, Habitants avec adultes et enfants					
Hors site	Rivière avec poissons Zones d'habitations	et pêche	Pêcheurs de poissons avec pratiques de consommation : sensibles Habitants avec adultes et enfants et jardins potagers : sensible					
	9	OURCES DE POLLUTION	POTENTIELLES					
Sols	Absence d'impact, ter	neurs modérées en métau	ux et PCB					
Gaz du sol	Présence de teneurs e	en Hydrocarbures volatils	et BTEX et trace de chlorure de vinyle					
VOIES DE TRANSFERT								
Modes de tr	ansfert	Retenue	Justifications					
Volatilisa		Oui	Composés volatils potentiellement présents dans le sous-sol					
Migration verticale vers lo		Non	Absence d'impact dans les sols					
La migration hors site via		Non	Absence d'impact dans les sols					
Bioaccumulation dans les	végétaux / animaux	Non	Absence de jardins potagers ou d'élevage sur le site					
Envol de pou	ussières	Non	Absence d'impact dans les sols et apport de terres saines prév sur les zones enherbées et jardins					
Perméat	ion	Non	Projet d'aménagement prévoyant de nouvelles canalisations entourées de matériaux sains et inertes					
MILIEUX et VOIES D'EXPOSI	ITION							
Voies d'expo	ositions	Retenue	Justification					
Inhalation	De gaz depuis les milieux souterrains vers l'air intérieur	Oui	Présence de composés volatils					
Inhalation	De gaz depuis les milieux souterrains vers l'air extérieur	Oui	Présence de composés volatils					

	De poussières issues des sols de surface	Non	Apport de terres saines sur les zones enherbées et jardins
	Eaux de distribution (via les vapeurs)	Non	En cas de projet d'aménagement, il est prévu de nouvelles canalisations entourées de matériaux sains et inertes
	Sol	Non	Apport de terres saines sur les zones enherbées et jardins
	De poussières issues des sols de surface	Non	Apport de terres saines sur les zones enherbées et jardins
Ingestion	Eau (eau du réseau)	Non	En cas de projet d'aménagement, il est prévu de nouvelles canalisations entourées de matériaux sains et inertes
	Aliments d'origine végétale ou animales	Non	Apport de terres saines sur les zones enherbées Absence de jardins potagers ou d'élevage
Contact cutaná	Sols et/ou de poussières	Non	Apport de terres saines sur les zones enherbées
Contact cutané	Eau (bain, douche, baignade)	Non	En cas de projet d'aménagement, il est prévu de nouvelles canalisations entourées de matériaux sains et inertes

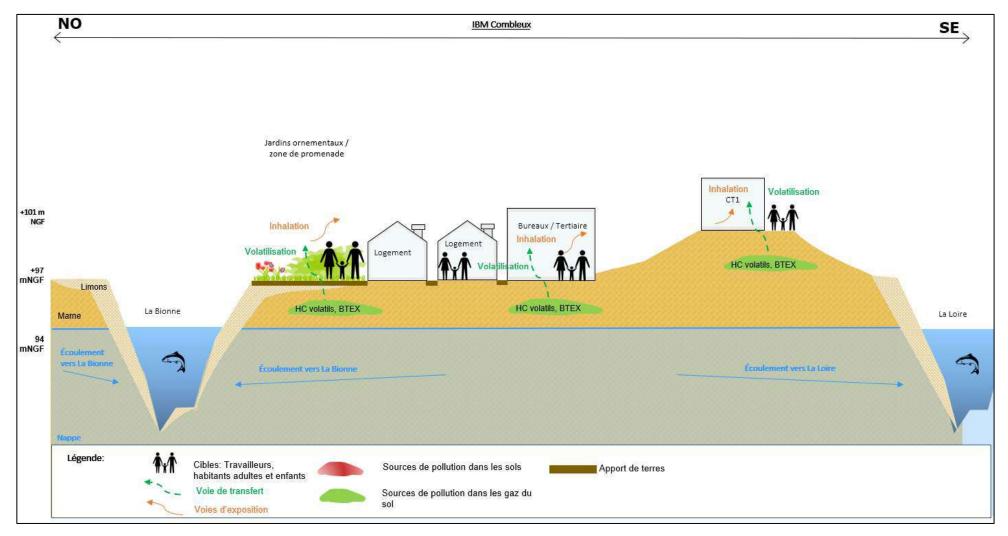


Figure 25 : Schéma conceptuel initial du site - usage future sensible.

12 CONCLUSIONS

Dans le cadre d'un projet de requalification de l'ancien site IBM à Combleux (45), l'EPFLi a mandaté ENVISOL pour la réalisation d'une étude historique et documentaire ainsi qu'un diagnostic de pollution des sols et gaz du sols du site sis Lieu-dit Clos du petit et du grand Poinville à Combleux (45).

Le site a fait l'objet des 2 études environnementales préalables :

- Un diagnostic initial intégrant une étude historique et documentaire et des investigations sur les sols (ANTEA, juin 2001),
- Une évaluation environnementale (ASTM Phase 1) intégrant une mise à jour de l'étude documentaire sans investigations complémentaires (ANTEA, mai 2004).

Ces études présentent un certain nombre d'incertitudes liées notamment à leur ancienneté et de la non exhaustivité des documents disponibles. L'objectif de cette étude est donc de mettre à jour l'étude historique et documentaire d'ANTEA et de réaliser des investigations sur les différents milieux (sols et gaz du sol) et afin d'anticiper toute problématique éventuelle associé à ces derniers.

Historiquement, le site était occupé par des parcelles agricoles. Il a ensuite été exploité pour une activité de data center de la fin des années 1960 à 2005. Depuis sa cessation d'activités en 2006, le site est une friche tertiaire. Le site est référencé dans la base de données des ICPE sous le régime de la déclaration de 1975 à 2006 pour l'exploitation d'une installation de combustion, d'un dépôt de 2048 kg de gaz combustible liquéfié, d'ateliers de charge d'accumulateurs, de deux réservoirs aériens d'huile, d'une chaufferie, d'un dépôt d'essence, de white spirit et de trichloroéthylène, des compresseurs d'air et de trois citernes de fuel.

L'usage futur du site est aujourd'hui encore en cours de discussion et un schéma conceptuel mixte a été considéré en accord avec l'EPFLi : jardins ornementaux avec zone de promenade (côté rivière) avec apport de terre, habitations et tertiaires (localisation non définie). En définitive, l'usage projeté des lieux est de type sensible avec l'utilisation des terrains pour des activités impliquant des travailleurs, adultes et enfants.

Les sols sont composés de remblais argilo-sableux, d'argile sableuse, puis de marne beige. La nappe, présente à environ 3 m de profondeur, s'écoule vers le sud-ouest. Elle est considérée comme vulnérable.

19 zones à risques de pollution potentielle ont été recensées et comprenant 7 anciens transformateurs à PCB, un atelier de charge d'accumulateurs, un pont hydraulique, un bac à graisses, trois cuves de fuel, une cuve d'huiles, un groupe électrogène, une fosse de reprise des eaux usées, une ancienne cuve d'acide sulfurique, deux parkings et une zone d'enfouissement et de dépôt sauvage. Ces zones sont réparties près des anciens bâtiments du site.

18 sondages ont été réalisés jusqu'à 5 m de profondeur au maximum et 4 piézairs ont été installés à 1,5 m de profondeur. 29 échantillons de sols ont été sélectionnés, en fonction des observations faites lors des sondages, pour être analysés en laboratoire.

Les résultats font état :

Pour les sols :

 Les résultats d'analyses sur les sols bruts indiquent des anomalies faibles à modérées en métaux (As, et Cu) au droit de S2 (Bâtiment B2) et S15 (Bâtiment CT2) et une teneur notable ponctuelle en PCB en surface du sondage S1. Cette teneur n'est pas retrouvée en profondeur.

Les résultats d'analyse sur les sols sur éluat indiquent un dépassement de seuil en fluorures au droit du sondage S17 (Parking visiteurs PVL). En cas d'excavation et évacuation hors site, les matériaux issus de cet échantillon devront être évacués en filière spécifique. Les filières d'évacuation et les centres de traitement restent souverains pour l'acceptation de terres excavées. Une consultation des filières doit être réalisée avant la phase des travaux pour fiabiliser et optimiser les coûts de traitement de sols non inertes.

• Pour les gaz du sol :

- Un bruit de fond est présent sur l'ensemble du site en TPH aliphatiques ;
- Le piézair au droit de l'ancien transformateur du bâtiment CT2 (ayant accueilli des stockages d'huile, d'essence, de white spirit, de fuel, de trichloroéthylène) présente globalement des concentrations supérieures aux autres piézairs du site notamment en BTEX et hydrocarbures et quelques traces de chlorures de vinyle

Dans la limite des investigations réalisées, au regard de l'état actuel de la qualité des milieux du site et de son futur usage (sensible) le schéma conceptuel met en évidence l'existence d'un risque potentiel pour les futurs usagers du site pour l'inhalation de substances volatiles. L'origine des impacts mesurée dans les gaz du sol n'a pas été déterminé par les investigations de sol.

Recommandations:

Lorsque le projet d'aménagement futur sera défini, ENVISOL recommande

- La réalisation de sondages complémentaire et l'implantation de piézair dans la zone du CT2 là où un impact sur les gaz du sol a été mis en évidence. Ce bâtiment ayant accueilli des stockages divers (huile, essence, fuel, white spirit, trichloroéthylène).
- la réalisation d'une nouvelle campagne de prélèvement des gaz du sol afin de valider la comptabilité sanitaire du sous-sol avec son usage futur.
- Si un impact est confirmé sur les gaz du sol, la mise en place de piézomètre sur site, notamment autour du bâtiment CT2, et la réalisation d'une évaluation quantitative des risques sanitaire et d'un plan de gestion.
- Dans le cadre de futures excavations, la réalisation d'investigations complémentaires (analyses de type ISDI) sur les terres excavées.

13 RESTRICTIONS D'USAGE DU DOCUMENT

Les conclusions et recommandations énoncées ci-dessus ne sont valables que pour l'usage du site fixé au démarrage de l'étude. En cas de changement d'usage, il sera nécessaire de mettre à jour ce document.

Ce rapport et ses annexes (corps de texte, cartes, figures, photographies, pièces et documents divers.) constituent un ensemble indissociable. L'utilisation qui pourrait être faite d'une communication ou reproduction partielle de cet ensemble, ainsi que toute interprétation au-delà des indexations et énonciations d'ENVISOL ne sauraient engager la responsabilité de celle-ci.

Les conclusions présentées dans ce rapport sont basées sur les conditions du site telles qu'observées lors de la visite et sur les informations fournies. Les informations obtenues sont supposées être exactes. Cette étude ne peut prétendre à l'exhaustivité.

GLOSSAIRE

ARS Agence Régionale de Santé
AEP Alimentation en Eau Potable
AEI Alimentation en Eau Industrielle

As Arsenic
Ba Baryum

BARPI Bureau d'analyse des Risques et Pollutions Industrielles
BASIAS Base des Anciens Sites Industriels et Activités de Service

BASOL Base de données sur les sites et sols pollués (ou potentiellement pollués) appelant une action des

pouvoirs publics, à titre préventif ou curatif

Bo Bore

BRGM Bureau de Recherche Géologique et Minière

BSD Bordereau de suivi de déchets BSS Base de données du sous-sol

BTEX Benzène, Toluène, Ethylbenzène, Xylènes.

Cd Cadmium Cr Chrome

COHV Composés Organo Halogénés Volatils

Cu Cuivre

DREAL Direction Régionale de l'Environnement, de l'Aménagement et du Logement

FOD Fioul domestique

Go Gasoil

HAM Hydrocarbures aromatiques monocycliques
HAP Hydrocarbures Aromatiques Polycycliques.

Hg Mercure HU Huiles usagées

ICPE Installation Classée pour la Protection de l'Environnement

INRA Institut National de la Recherche Agronomique ISDI Installation de Stockage pour Déchets Inertes

Mo Molybdène Ni Nickel Pb Plomb

PCB Polychlorobiphényles

PL Poids lourds Sb Antimoine Se Sélénium

SP 95 Essence sans plomb 95 SP 98 Essence sans plomb 98

VL Véhicules légers

ZICO Zone Importante pour la Conservation des Oiseaux

Zn Zinc

ZNIEFF Zone Naturelle d'Intérêt Ecologique Faunistique et Floristique ICPE Installation Classée pour la Protection de l'Environnement La carte des anciens sites industriels et activités de services

SIS Système d'information sur les sols

14 ANNEXES

Annexe 1 : Contexte réglementaire et normatif

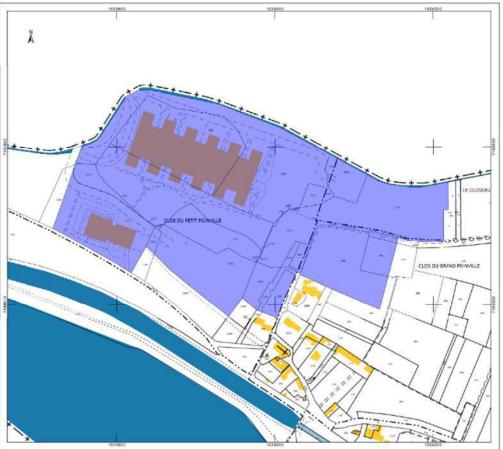
Les études sont menées conformément à la méthodologie développée par le Ministère en charge de l'environnement (avril 2017) ainsi qu'à la norme NFX 31-620 partie 2 de décembre 2021.

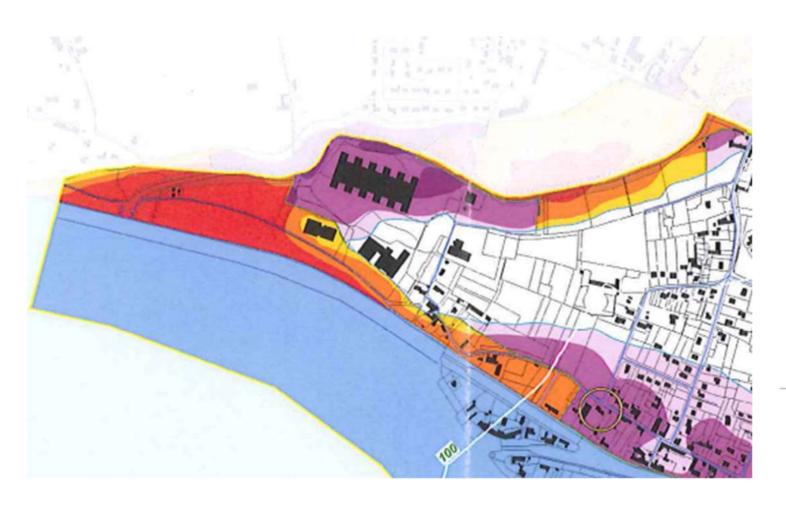
Pour les investigations sur les différents milieux, ENVISOL s'appuie sur les documents suivants :

Investigations sur les sols :

- → NF ISO 18400-100 « Qualité du sol Echantillonnage Partie 100 : Lignes directrices pour la sélection des normes d'échantillonnage », Mai 2017 ;
- → NF ISO 18400-101 « Qualité du sol Echantillonnage Partie 101 : Cadre pour la préparation et l'application d'un plan d'échantillonnage », Juillet 2017 ;
- → NF ISO 18400-102 « Qualité du sol Echantillonnage Partie 102 : Choix et application des techniques d'échantillonnage », Décembre 2017 ;
- → NF ISO 18400-103 « Qualité du sol Echantillonnage Partie 103 : Sécurité, Décembre 2017 ;
- → NF ISO 18400-104 « Qualité du sol Echantillonnage Partie 104 : Stratégies, Avril 2019 ;
- → NF ISO 18400-105 « Qualité du sol Echantillonnage Partie 105 : Emballage, transport, stockage et conservation des échantillons », Décembre 2017 ;
- → NF ISO 18400-106 « Qualité du sol Echantillonnage Partie 106 : Contrôle de la qualité et assurance de la qualité », Décembre 2017 ;
- → NF ISO 18400-107 « Qualité du sol Echantillonnage Partie 107 : Enregistrement et notification », Décembre 2017 ;
- → NF ISO 18400-201 « Qualité du sol Echantillonnage Partie 201 : Prétraitement physique sur le terrain », Décembre 2017 ;
- → NF ISO 18400-202 « Qualité du sol Echantillonnage Partie 202 : Investigations préliminaires », Avril 2019 ;
- → NF ISO 18400-203 « Qualité du sol Echantillonnage Partie 203 : Investigations des sites potentiellement contaminés », Avril 2019 ;
- → NF ISO 15800 « Qualité du sol : Caractérisation des sols en lien avec l'évaluation de l'exposition des personnes », Mars 2020 ;
- → NF EN ISO 19258 « Qualité du sol : Recommandations pour la détermination des valeurs de fond », Septembre 2018 ;
- → Guide ADEME de novembre 2018 pour la détermination des valeurs de fonds dans les sols échelles d'un territoire / d'un site

Investigations sur les gaz du sol :


- → Pour la réalisation des piézairs :
 - NF ISO 18400-204 de juillet 2017 « « Qualité du sol- Echantillonnage ; Partie 204 : Lignes directrices pour l'échantillonnage des gaz du sol » ;
 - Rapport BRGM / INERIS « Guide pratique pour la caractérisation des gaz du sol et de l'air intérieur en lien avec une pollution des sols et/ou des eaux souterraines » (novembre 2016);
 - Projets de recherche FLUXOBAT, ATTENA, CITYCHLOR.
- → Pour la réalisation des prélèvements sur les gaz du sol :
 - NF ISO 18400-204 de juillet 2017 « « Qualité du sol- Echantillonnage ; Partie 204 : Lignes directrices pour l'échantillonnage des gaz du sol » ;
 - Rapport BRGM / INERIS « Guide pratique pour la caractérisation des gaz du sol et de l'air intérieur en lien avec une pollution des sols et/ou des eaux souterraines » (novembre 2016);
 - Rapport ADEME « Mode opératoire Apports et limitations de l'analyse des gaz du sol » de janvier 2013;
 - o Rapport FLUXOBAT, ANR PRECODD « Evaluation des transferts de COV du sol vers l'air


Annexe 2: Plan cadastral et PLU

Légende des zones réglementées Hors d'eau Zone d'expansion de crue Aléa faible à moyen Aléa fort hauteur Aléa fort vitesse Aléa très fort hauteur Aléa très fort vitesse Autre zone urbaine Aléa faible à moyen Aléa fort hauteur Aléa fort vitesse Aléa très fort hauteur Aléa très fort vitesse Zone urbaine dense Aléa faible à moyen Aléa fort hauteur Aléa fort vitesse Aléa très fort hauteur Aléa très fort vitesse Secteurs urbanisés "particuliers" en zone d'expansion de crue Aléa fort hauteur Aléa très fort hauteur Zone de dissipation d'énergle Zone d'écoulement préférentiel Lit endigué Légende d'informations générales Limites PPRI Limites zones urbanisées Isocotes de l'aléa de référence Limites communales Parcellaire - Cadastre (DGI)

Bâti / Mairie

Vole de communication

Annexe 3 : Questionnaire synthétique de la visite de site

QUESTIONNAIRE DE VISITE DE SITE - A100 - 1/2

Intervenant ENVISOL: JAOUEN MA

Date de la visite : 24/05/2022

										Date de la Visité	5 . 24/03/2022
DESCRIPTION	I GENI	ERALE DI	J SITE						INFORMATIO	NS RELATIVES	AU CLIENT
Raison sociale connue		Ancien site IBM				Nom du client				EPFLi	
Adresse du site Lieu-dit Clos du petit et du grand Poinville							Contact s	ur site			Monsieur PABUT
OMBLEUX					Fonction of	lu contact		(Chargé de travaux		
							Coordonn lors de la		act sur site		06 07 58 47 64
Parcelle cadastrale	A 1154, 1149, 1152, 1155, 1158, 1157, 338, 1165 1151, 1156, 1150, 1175, 1170, 1174, 1176, 346, 1 345, 1171, 1168, 1173, 1167, 1172, 1166, 1180, 1 1178, 856, 1182, 853, 851				346, 1177,	Délai de re	endu de l'ét	ude		08/07/2022	
Surface (m2)	106 879 m²				Remarques						
Etat de mise en sécurité du site	clôturé / ronde de garde										
Bâtiment plain-pied ou sous/sol	1 seul	seul bâtiment CT1 encore en place			CONTEXTE DE LA DEMANDE						
Nature des revêtements au sol		e en place		timents : te e vert autou			Cession		Requalification	de l'ancienne fric	he IBM
Hauteur porte d'entrée du bâtiment	plus d	e 3 m					Acquisitio	n			
Constat visuel de pollution au sol, si oui localisation				non			Autre		Réhabilitation		
				non			Futur proj	et	Pas de projet s	statué à ce jour	
Conditions d'accès au site Occupation des lieux par association le 10/6/22	! (bâtim	nent CT1)					Remarque	es			
ACTIVIT	ES AC	TUELLES	3						ACT	IVITES PASSEE	s
Type d'activités	Friche						Type d'ac	tivités			Data center IBM
Date de début de l'activité						2006	Date de d	ébut de l'ac	tivité		1966
Date de fin de l'activité	-						Date de fi	n de l'activit	é		2006
ACCIDENTS/INCIDEN	ITS PA	SSES SU	R LE S	ITE (DESC	RIPTION	I, DATE ET	LOCALIS	ATION) / P	LAINTES RELA	ATIVES A LA PO	LLUTION
Débordement/déversement de produit								1			
Incendie								1			
Plainte du voisinage								1			
Autre								1			
	ļ	DESCRIP	TION D	ES ACTIVI	TES ET	INSTALLAT	IONS PR	ESENTES S	SUR LE SITE		
En activité	oui		non	Х	ne sait		Régime	e ICPE :		Enregistrement	
Le site est il ICPE	oui	Х	non		pas		Décla	aration		Autorisation	x
Chauffage											
Mode de chauffage actuel	gaz				Mode de	chauffage	par le pass	sé		gaz	х
	électri	que								électrique	
	fioul									fioul	х
Produits chimiques utilisés et stockés sur l	e site				Mode	de stockaç	ge (cuve, I	oidon)	Quantités	(nombre de cu	ves, volume), localisation
Peintures et vernis	oui		non		aérien		enterré				
Huiles neuves	oui		non		aérien		enterré				
Huiles usagées	oui		non		aérien		enterré				
Gasoil	oui		non		aérien		enterré				
SP95	oui		non		aérien		enterré				
SP98	oui		non		aérien		enterré				
Dégraissant	oui		non		aérien		enterré				
	oui		non		aérien		enterré				
	oui		non		aérien		enterré				
	oui		non		aérien		enterré				
	oui		non		aérien		enterré				
	oui		non		aérien		enterré				

	IESTIO	NNAIDE DI	E VISI	ITE DE SIT	TE - A100 - 2/2				Intervenant ENVISOL: JAOUEN MA		
	LSTIO	MNAINE DI	L VIO	ITE DE SI	1L - A100 - 2/2				Date de la visite : 24/05/2022		
Stockage divers					Autres zones d'act	ivités			Remarques/Localisation		
Déchets banals	oui		non	х							
Déchets industriels	oui		non	Х							
Lesquels? (batteries, filtres usagés)	•										
Réseau d'eaux pluviales											
Séparateur d'hydrocarbures	oui		non	Х							
Puisards	oui		non	х							
Station de traitement des eaux	oui		non	х							
Alimentation électrique				•							
Présence actuelle d'un transformateur	oui		non	Х							
Présence passée d'un transformateur	oui		non	х							
Avec PCB	oui		non	х							
				EL	EMENTS SUR LE S	OUS SOL					
Présence de cavité, sappe, glissement de terrain	NON					Etudes a	antérieures :	sur le sous-sol	Etudes ANTEA transmise par EPFLi		
Présence de puits ou piézomètres	NON								Etudes ANTEA transmise par Er i El		
				I	ENVIRONNEMENT D	U SITE					
Immédiat / voisinage proche							Quartier / voisinage éloigné				
Nord Rivière la Bion, Aire de jeux, habitation collective	Est Champ habitat	ps tions individ	luelles								
Sud habitations individuelles, église, chemain de halage	Ouest Le bior Espac										
Présence d'établissement sensibles		Eco	ole à 3	350 m au s	ud-est						
Remarques						Remarqu	es				
					REMARQUES						

Réaménagement de la rive de la bionne à l'ouest du site, création d'un merlon pour création d'un bassin tampon de crue (fait par le syndicat de pêche)

Annexe 4 : Récépissé de déclaration et autorisation

PREFECTURE DU LOIRET

DIRECTION DES COLLECTIVITES LOCALES ET DE L'ENVIRONNEMENT BUREAU DE L'ENVIRONNEMENT

BORDEREAU D'ENVOI

AFFAIRE SUIVIE PAR
TELEPHONE
ANNICK PARET
02 38 81 41 30 REFERENCE

IC/IBM Mél : annick.paret@loiret.pref.gouv.fr SUBDIVISIO

0 8 OCT. 2003

COURHIC

MONSIEUR L'INSPECTEUR DES INSTALLATIONS CLASSEES ARRIVE Direction Régionale de l'Industrie, de la Recherche et de l'Environnement Avenue de la Pomme de Pin

Le Concyr 45590 ST CYR EN VAL

ORLEANS, LE

3 OCT. 2002

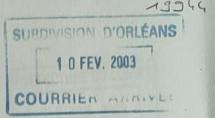
OBJET:

Installation classée -

Société IBM FRANCE à SAINT JEAN DE BRAYE et COMBLEUX

REF:

Votre rapport du 12 juin 2003


Désignation des pièces	Nombre	Observations
Demande présentée par la Société IBM FRANCE qui sollicite la mise à jour de son arrêté préfectoral d'autorisation du 18 avril 995 à la suite de ma lettre du 25 juin 2003 renant acte des modifications intervenues ur les installations de réfrigération de son te.	1	Transmise pour avis.

Le Préfet, Pour le Préfet, Le Chef de Bureau délégué,

Frédéric ORELLE

PREFECTURE DU LOIRET

DIRECTION DES COLLECTIVITES LOCALES ET DE L'ENVIRONNEMENT

BUREAU DE L'ENVIRONNEMENT

AFFAIRE SUIVIE PAR TELEPHONE

ANNICK PARET 02 38 81 41 30 IC/HOPITAL

Mél: annick.paret@loiret.pref.gouv.fr

BORDEREAU D'ENVOI

- MONSIEUR L'INSPECTEUR DES INSTALLATIONS CLASSEES Direction Régionale de l'Industrie, de la Recherche et de l'Environnement Avenue de la Pomme de Pin Le Concyr 45590 ST CYR EN VAL

ORLEANS, LE

7 FEV. 2003

RG

OBJET: Installation classée -

Société IBM FRANCE à AINT JEAN DE BRAYE

Désignation des pièces	Nombre	Observations
Lettre du 24 janvier 2003 de la Société Tractebel Elyo informant que la Société IBM FRANCE de SAINT JEAN DE BRAYE a changé deux cuves à fuel et une cuve d'huile.	1	Transmise pour avis

Le Préfet,
Pour le Préfet,
Le Chér de Bureau délègué,

Value de Bourgogne 45042 m

Servey.

Le Préfet,
Pour le Préfet,
Le Chér de Bureau délègué,

Frédéric ORELLE

Le Préfet,
Pour le Préfet,
Pour le Préfet,
Pour le Préfet,
Le Chér de Bureau délègué,

Frédéric ORELLE

181, rue de Bourgogne 45042 m

Servey.

Une déclaration de cessation d'activités a été transmise aux services de la préfecture du département, le 3 mars 2006.

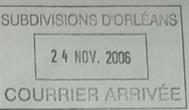
Le 18 avril 2006, le Préfet du Loiret a rappelé à l'exploitant ses obligations réglementaires en matière de cessation d'activités, issues des articles 34.1 et suivants du décret n° 77-1133 du 21 septembre 1977 modifié.

II - ACTIVITES CLASSEES A L'ARRETE PREFECTORAL DU 18 AVRIL 1995

Rubriques	Désignation	A, D ou NC	Observations
2920-2	Installation de réfrigération ou de compression fonctionnant à des pressions manométriques supérieures à 10 ⁵ Pa, comprimant ou utilisant des fluides non inflammables et non toxiques. La puissance absorbée étant supérieure à 500 kW.	A	Au 31/12/2005 ne subsistaient sur le site que les groupes froids suivants : - GF LENNOX au CT1 - GF Centri Trane au CT2 - GF Pistons Trane au CT2 - GF Pistons Carrier au bâtiment Poinville
2910-A2)	Installations de combustion. Lorsque l'installation consomme exclusivement, seuls ou en mélange, du gaz naturel, des gaz de pétrole liquéfiés, du fioul domestique. La puissance thermique maximale de l'installation est comprise entre 2 MW et 20 MW.	D	Au 31/12/2005 l'installation de combustion comportait: - 2 chaudières VIESSMAN de 1750 kW chacune; - 1 chaudière DE DIETRICH de 244 kW; - 3 groupes électrogènes d'une puissance totale de 1 660 kW soit une puissance totale de 5 404 kW.
1430/1432	Stockage en réservoirs manufacturés de liquides inflammables. La capacité totale équivalente est inférieure à 10 m³.	NC	Au 31/12/2005, le stockage de liquides inflammables se composait de 2 cuves DP de FOD d'une capacité de 10 m ³ chacune.

L'exploitation d'une tour aéroréfrigérante, désormais démantelée, a fait l'objet d'une déclaration en date du 15 juin 2005

	Installations de refroidissement par dispersion d'eau dans un flux d'air, lorsque les installations sont du type circuit primaire fermé.	D	La puissance thermique évacuée par l'installation : 2 100 kW. L'installation est démantelée depuis septembre 2005
--	--	---	---


III - SITUATION ACTUELLE

• Installations de réfrigération :

La société TRANE SAS atteste par courrier en date du 8 août 2006 que le fluide frigorigène et l'huile ont été vidés des groupes suivants : GF LENNOX, GF Centrifuge Trane, GF Pistons Trane et GF Pistons Carrier.

PREFECTURE DU LOIRET

DIRECTION DES COLLECTIVITES LOCALES ET DE L'AMENAGEMENT

BUREAU DE L'AMENAGEMENT ET DES RISQUES INDUSTRIELS

AFFAIRE SUIVIE PAR TELEPHONE COURRIEL

REFERENCE

MME PARET 02 38 81 41 30 annick.paret@loiret.pref.gouv.fr

IC/IBM

BORDEREAU D'ENVOI

à

M. l'Inspecteur des Installations Classées Direction Régionale de l'Industrie, de la Recherche et de l'Environnement Avenue de la Pomme de Pin Le Concyr SAINT CYR EN VAL

ORLEANS, LE

22 NOV. 2006

OBJET: Installation Classée - Société IBM à SAINT JEAN DE BRAYE

REF.: Votre rapport du 12 octobre 2006

Ma lettre à l'exploitant du 30 octobre 2006

DESIGNATION DES PIECES	Nombre	OBSERVATIONS
Lettre du 9 novembre 2006 de la Société IBM précisant que la tête de forage avait été dégagée et la plaque de forage cadenassée sur le site de SAINT JEAN DE BRAYE.	1	Transmise à toutes fins utiles.

> Denie 51 AX

Le Préfet, Pour le Préfet, Le Ouef de Bureau délégué,

Stéphane ERRIN-BOISSON

A retourner à :

A PREFECTURE DU LOIRET 2^{ème} Direction – 3^{ème} Bureau

INSTALLATIONS CLASSEES

Code de l'Environnement Décret du 21 septembre 1977 modifié

DECLARATION DE CESSATION D'ACTIVITE

Installation classée pour la protection de l'environnement soumise à AUTORISATION

JE SOUSSIGNE: Michel PINAULT

50 à 56, avenue Provie et Parie Civie

exploitant à: 45800 SAINT JEAN DE BRAYE

un établissement dont l'activité relève du Code de l'Environnement,
notamment de l'article L 512-1 (autorisation) du Titre I^{er} du Livre V
faisant l'objet d'un arrêté préfectoral (*) en date du : 18 Avul 1995 (N° 95)

DECLARE (1):

- que l'ensemble de l'établissement a cessé définitivement son activité (3)
- que la partie de l'établissement qui a cessé son activité concerne les installationssuivantes (2) (3):

A Borguy Aux Braine le 3 Mars 2006

(*) En cas de cessation définitive d'une activité autorisée assujettie à la Taxe Générale sur les Activités Polluantes (TGAP), l'article 266 undecies du Code des Douanes demande de régulariser la situation au regard de la TGAP dans les 30 jours qui suivent la fin de cette activité. La taxe due est alors immédiatement établie. La déclaration de cessation d'activité est le cas échéant accompagnée du paiement.

⁽¹⁾ Rayer la mention inutile

⁽²⁾ Indiquer de façon précise

⁽³⁾ Indiquer la date de cessation

Introduction de notification des mesures prises et prévues pour assurer, des l'arrêt d'exploitation, la mise en sécurité du site

Copie à Messieurs les Maires des communes de Combleux et de Saint Jean de Braye

Produits dangereux:

A la fermeture du site au 31 décembre 2005, il re restait aucun produit dangereux, à l'exception des fluides frigorigenes contenus dans les groupes frigorifiques,

- Lennox 150 kwf 56 kg de R407C
- Trane 1710 kwf 550 kg de R134A
- Trane 610 kwf 256 kg de R134A
- Carrier 400 kwf 100 kg de R22 (50 kg en perte sur bris d'un évaporateur) conformément à l'arrêté d'exploitation.

Ces équipements seront vidés de leurs fluides frigorifiques qui seront récupérés pour recyclage par un professionnel agréé (TRANE), conformément à la législation en vigueur et les bordereaux de suivi de déchets industriels (BSDI) seront transmis à la Préfecture

Les installations de production et de distribution de fluides calorifiques ont été mises hors d'eau ainsi que les installations sanitaires.

Accès au site:

Le site a été fermé par IBM au 31 décembre 2005 à minuit.

Il est protégé par une clôture périphérique et les portails d'accès sont fermés à clé, ainsi que les portes d'accès aux bâtiments.

Risques d'incendie et d'explosion :

Les contrats

- EDF pour l'électricité
- GDF pour le gaz
- SAUR pour l'eau

ont été résiliés au 31 décembre 2005

Les bâtiments sont vides de tout mobilier et de tout stockage ou autre matière ou produit inflammable

Les deux cuves à fioul, double enveloppe et de 10m3 de capacité chacune, ont conservée leur niveau d'usage pour les besoins de la Foncière des Régions à partir du 1° janvier 2006-03-01

L'ensemble des installations a été arrêté par la Société Elyo dans le cadre de son contrat avec IBM le 31 décembre 2005

Les diagnostics environnementaux menés par ANTEA (voir annexes) sur le site

- En juin 2001
- Et confirmé en mai 2004 dans le cadre de la vente ont mis en évidence qu'aucune forme de pollution, ni d'impact n'ont été identifiés, que toutes les analyses effectuées étaient conformes aux valeurs de définition souls sol et aux valeurs de constatd'impact, le site a été classé en catégorie 3 (site banalisable) au sens de l'ESR.

Exploitation du site à partir du 1° janvier 2006

Depuis le 1° janvier 2006, le site est exploité par la FONCIERE DES REGIONS situé au 84 de la rue Chantepie à Joué les Tours 37300.

A cette date, la société ELYO a repris la maintenance de ce site en prestation de veille technique selon le schéma technique joint en annexe, dans le cadre d'un contrat avec la Foncière des Régions.

La situation en énergie est la suivante :

- L'alimentation en eau de ville a été rétablie sur une partie des bâtiments
- L'alimentation électrique en 20 000V a été rétablie pour les besoins de mise en veille et de sécurisation du site
- L'alimentation en gaz n'a pas été rétablie

Une partie des installations peut être remise en service par ELYO à la demande de la Foncière des Régions, notamment une production d'eau glacèe.

Les installations de sécurité demeurent opérationnelles (RIA's, bornes d'incendie, détection incendie....)

A l'exception des bâtiments du type habitation de l'ancien centre de séminaires, les autres bâtiments sont sous alarmes en liaison avec un centre de télésurveillance et ils sont sous contrôle vidéo avec enregistrement permanent.

Les deux cuves double enveloppe de fioul domestique sont utilisées pour les besoins du site :

- Une pour le maintien hors gel d'une partie des bâtiments (Centre de séminaire)
- Une pour les groupes électrogènes qui assurent le secours des installations de sécurité et de télésurveillance

Elyo a conservé sur ce site un atelier et un stock minimum nécessaire à l'accomplissement de sa prestation pour le compte de a Foncière des Régions

REPUBLIQUE FRANCAISE

-e h War 6.275

ETABLISSEMENT DANGEREUX
INSALUBRE OU INCOMMODE

Loi du 19 Décembre 1917 - Décret du 1er Avril 1964

RECEPISSE DE DECLARATION

Etablissement de 3ème Classe

Nº 153 bis 20; 211 B 20 b; 3-10 et 33 bis -

LE PREFET DU LOIRET :

- ACCUSE RECEPTION à M. le Représentant de la Cie I.B.W. FRAICE (siège social 1 3 et 5, place Vendôme à PARIS ter)

- 1° de sa (ou ses) déclaration(s) en date du (ou des) 18 Mai 1973, 5 Septembre 1973 et faisant connaître son intention 25 Octobre 1974 Faisant connaître qu'il exploite, sur les territoires des commune de GOMBLEUX et SAIRT-JEAN-DE-BRAYE, un centre comprenent à
 - a) une installation de combustion composée de deux générateurs dont un sculement doit fonctionner et a une puissance nominale de 1 300 th/h (nº 153 bis de la nommolature) ; -

... suite au verso

2º - du (ou des) plan(s) d'ensemble de l'établissement.

- INFORME le déclarant qu'il devra se conformer aux prescriptions générales jointes au présent récépissé de déclaration. La combination vioce au 5 cl-dessus, la hauteur de character de character à 1,50 m.

ORLEANS, IN 5 FEV. 1975

LE PREFET.

Pour le Prélet Le Chof de Bureau

P. BOUGHAUD

SOUS-ARRONDASSEMENT MINÉRALOGIQUE d'ORLÉANS

Reg. SA EC " No 40 73 45

Date : -6. FEV. 1975

NOTA:

— Le présent récépissé est délivré exclusivement au titre de la législation sur les établissements dangereux, insalubres ou incommodes. Il ne dispense pas le déclarant de se conformer à toute autre réglementation pouvant lui être applicable : permis de construire, permission de voirie et autres autorisations du maire, des chambres professionnelles, services fiscaux, etc...

— Conformément à l'article 25 du décret du 1er Avril 1964, lorsqu'un établissement de 3ème classe n'a pas ouvert dans un délai de 3 ans à partir de l'accusé de réception, l'industriel doit faire une nouvelle déclaration, dans les mêmes formes que la précédente.

DIFFUSION AU VERSO.

- b) un dépôt de 2 048 kg de gas combustible liquésié (propane) dont la pression (absolut) de vapeur à 15°C est supérieure à 1 bar, sons opération de transvassment (n° 211 D 2° b de la nomenclature); -
- c) des ateliers de charge d'accumulateurs, p'agissant de charges ordinaires our des accumulateurs n'ayant pas de plaques à reformer, la puissance ma simus du courant continu utilisable pour cette opération étant supérieur à 2,5 EV (n° 1° de la nomenclature) ; -
- d) doux reservoirs sériens, l'un de 6 000 l d'huile neuve, l'autre de 8 000 l d'huile unée (non classable) : -
- e) une chaufferie de 165 th/h (non classable) : -
- f) un dépôt (en bidons) de 150 1 d'essence, de 40 1 de white spirit et de 40 1 de trichloréthylène (non classables) ; -

L'intéressé utilise également, dans ce centre, des compresseurs d'a (m° 33 bis de la nomenclature).

DIFFUSION:

- original : dossier

- demandeur : CIE IBM FRANCE (2 ex) (5/c de M. le Maire de COMPLEUR)

- H. le Maire de COMBLEUX

- M. le Maire de SAINT-JEAN-DE-BRAYS

- M. l'Impecteur des Ets Classés, Ingénieur des Mines

- M. le Directeur Départemental de l'Equipement

Le Chef de Bureau,

WPB/AF

RE DU LOIRET

rection stration Générale léglementation

BUREAU

REPUBLIQUE FRANCAISE

ETABLISSEMENT DANGEREUX
INSALUBRE OU INCOMMODE

Loi du 19 Décembre 1917 — Décret du 1er Avril 1964

RECEPISSE DE DECLARATION

Etablissement de 3ème Classe

Réservoirs souterrains de liquides inflammables

LE PREFET DU LOIRET :

- ACCUSE RECEPTION à M; le Représentant de la Cie I.B.M. PRANCE (siège social : 3 et 5, place Vendême Paris for)
 - 1° de sa (ou ses) déclaration(s) en date du (ou des) 18 Mai 1973, 5 Septembre 1973 et faisant connaître qu'il exploite, dans son établissement implanté sur les territoires des communes de COMBLEUR et SAINT-JEAN-DE-BRAYE, des dépôts de liquides inflammables de 20me catégorie, à savoir :
 - a) deux citernes, placées dans le sol, de 40 000 l chacune de fuel lêger : -
 - b) une citerne, placée dans le sol, de 10 000 1 de fuel oil domestique.

Ce(s) réservoir(s) sera (seront) construit(s) et installé(s) conformément aux prescriptions de l'arrêté ministériel du 28 Octobre 1952 modifie.

2° – du plan d'ensemble de l'établissement.

- INFORME le déclarant qu'il devra :

- 1° adresser au Préfet le procès-verbal d'essai de résistance et d'étanchéité du (ou des) réservoir(s) dont ci-joint un modèle après la mise en place et avant la mise en service, conformément aux dispositions de l'arrêté ministériel précité.
- 2° se conformer aux prescriptions générales jointes au présent récépissé de déclaration.

ORLEANS, IE 5 FEV. 1975

LE PREFET,

Pour le Prélet ... Le Chof de Bureau

P. BOUCHAUD

Vu pour authentification
ETABLISSEMENT CLASSE
ocument annexé à la décision
ce jour.
Orléans, le

Pour le trafet
Le Chot d'Bureau

2 8

DECLARATION DE CLASSEMENT

1/2

(Renseignements Complémentaires)

Nom de l'exploitant

Compagnie IBM France Centre Administratif Sainte-Marie

Commune

Combleux

Adresse

50 à 56, avenue Pierre Curie 45800 SAINT-JEAN-DE-BRAYE

1. DEPOT DE FUEL LEGER

Complemen

. 2 réservoirs souterrains de 40.000 litres chacun

2. DEPOT DE 10.000 1 DE FUEL DOMESTIQUE / DEPOT DE FUEL LEGER

a) emplacement des réservoirs

b) évent et bouche de remplissage

voir plan ci-joint

Sur Stefacu - d Broye -

3. DEPOTS DE GAZ

. cuve de 2326 dm3

. nature exacte du gaz : propane

97 Jean de Braye.

4. INSTALLATIONS DE COMBUSTION

Aucune note de calcul conformément aux règles de la circulaire ministérielle du 24 Novembre 1970 ne peut être fournie, la construction ayant été réalisée en 1966.

5. HUILE

- . réservoir de 6.000 l d'huile neuve et 4.000 l d'huile usée
- . mode de stockage : aérien ·

Couldens

6. MODE D'EVACUATION DES EAUX USEES

Voir plan ci-joint réseau E.U.

St-Jean-de-Braye, le 5 Septembre 1973 Chef du Service Travaux et Installation

C. THIERRY

/u pour authentification

FABLISSEMENT CLASS

ument annexé à la décision

ze jour.

Intéans, le FEV un constitution de la choi de lure de la choi de la choi de la choi de la choi de lure de la choi de lure de la choi
DECLARATION DE CLASSEMENT

2/5

Raison sociale

Compagnie IBM FRANCE Société Anonyme au capital de 716 248 000 F

Adresse du siège

3 et 5 place Vendôme

PARIS (1er)

Nom de l'Etablissement

Compagnie IBM FRANCE

Centre Administratif de Sainte-Marie

Commune

Combleux

Adresse

50 à 56, avenue Pierre Curie

45800 - ST JEAN DE BRAYE

Activité

Gestion Administrative et Comptable

Traitement de l'Information

(locaux n'ayant aucune activité industrielle classable : travaux bureaux et

salles ordinateurs)

N° INSEE de l'Etablissement

297 45 284 0 001

N° INSEE Siège

297 75 101 0 016

N° Registre de Commerce

de la Société

Paris 55 B 11 846

N° Registre de Commerce

du Centre

63 B 57

PJ. Annexe 1 Annexe 2 Plan échelle 1/2000 Saint-Jean-de-Braye, le 18 Mai 1973

Le Chef d'Etablissement

P. de CHABANOLLES

DEPOT DE LIQUIDES INFLAMMABLES

- Utilisation

Chauffage - dégralssage - nettoyage

- Nature et mode de stockage

Fuel léger et fuel domestique (souterrain et cuves enterrées)

Essence - with spirit - trichlore

(aérien - jerrican)

max1 10 000 1

v'- Coul. restourent x Fuel léger Essence

max1 80 000 1 2 ru. 1005 150 1 maxi

x With spirit

max1

x Trichlore

maxi

40 1 (en journe 40 1

CHAUFFERIES

2 brûleurs

Fuel léger

1 brûleur 2 brûleurs Fuel domestique

Gaz

- Puissance des installations en thermies/heure :

. Chaufferie restaurant 1800 x 2 =

3 600 Th/h

. Chaufferie centre éducation

165 Th/h

DEPOT DE GAZ COMBUSTIBLE LIQUEFIE

- Utilisation

Restaurant - Centre Education

- Quantité stockée

X 1 cuve de 2326 dm3 soit

1 190 kg

211. B.

X 1 cuve de 4000 dm3 soit

2 048 kg

- Mode de stockage

Cuve enterrée

- Moyens de secours contre l'incendie

Extincteur poudre sache P 9

COMPRESSEURS D'AIR

- Nombre de cuves

12

- Utilisation

- . Régulation pneumatique
- Pulvérisation mécanique (humidification)
- . Energie pour pompe relevage condensat

complete

I. - Restaurant : 2 brûleurs

- . Puissance normale du générateur en thermies/h
- . Consommation de combustible en 1 heure
- . Température des gaz rejetés
- . Volume des gaz imbrûlés rejetés
- . Volume du CO 2 rejeté
- . Vitesse de sortie des gaz
- . Nature du combustible
- . Teneur en souffre
- . Diamètre intérieur de la cheminée
- . Hauteur de l'immeuble de la chaufferie

3 600 Th/h 100 1 environ 303 °C 0 % 13 % 117 m/mn Fuel léger 2 % max1 65 cm

00 011

7 m

II. - Centre Education

- . Puissance normale du générateur en thermies/h
- . Consommation moyenne de combustible en 1 heure
- . Température des gaz rejetés
- . Vitesse des gaz rejetés
- . Nature du combustible
- . Teneur en souffre
- . Diamètre intérieur de la cheminée
- . Hauteur de l'immeuble de la chaufferie

165 Th/h 5 I 310 ° C 320 m/mn Fuel domestique

0,55 %

280 mm

12 m

POSTE DE RECHARGE D'ACCUMULATEUR

- Un poste de recharge ordinaire des batteries d'engin de manutention, puissance 1,2 Kw, situé dans un vide sanitaire parfaitement ventilé.
- Un poste de recharge ordinaire des batteries de l'autocommutateur, puissance 5,2 Kw, situé dans le local même ventilé.

EVACUATION DES EAUX USEES

(Eaux vannes et eaux de déconcentration aéroréfrigérantes)
Ces eaux sont évacuées pers le collecteur d'égouts communal.

hy

IBM Saint-Jean-de-Braye A34736/A

3.2. Contexte réglementaire

D'après la nomenclature des Installations Classées pour la Protection de l'Environnement, le site IBM de St Jean de Braye est concerné par les rubriques suivantes :

Nº Rubrique	Désignation de l'activité	Classement	Rayon
2920 2)	Installations de réfrigération ou compression fonctionnant à des pressions effectives supérieures à 10 ⁵ Pa. 2) Dans tous les autres cas : La puissance absorbée est supérieure à 500 kW. Puissance totale : ~825 kW (3400 kWf)	Autorisation	1 km
2910 A 2)	Combustion. La puissance thermique maximale de l'installation est comprise entre 2 MW et 20 MW. 2 chaudières VIESSMANN de puissance maximale de 1750 kW chacune. 1 chaudière De Dietrich de puissance maximale de 244 kW. 3 groupes électrogènes d'une puissance totale maximale de 1660 kW. Puissance totale: 5404 kW	Déclaration	
1432 2)	Stockage en réservoirs manufacturés de liquides inflammables. Le site comprend deux cuves de fuel de 10m³ chacune. Ces cuves contiennent des liquides inflammables de catégorie C (fuel domestique, coefficient 1/5) et sont en double enveloppe avec système de détection de fuite et représentent une capacité équivalente totale inférieure à 10 m³.	Non Classée	

Tableau 2 : Recensement des Installations Classées du site d'IBM

DECLARATION PRELEVEMENT D'EAU SOUTERRAINE > à 8m3/h
RENDUE OBLIGATOIRE PAR LE DECRET DU 23 FEVRIER 1973 (Article 10)

1. CENTRE ADMINISTRATIF - SAINTE MARIE

Compagnie IBM FRANCE Saint-Jean-de-Braye 45800, 50, avenue Pierre Curie Siège social : 5, place Vendôme PARIS 1er
Monsieur C. THIERRY, Chef du Service Travaux et Installations

2. SITUATION DU CAPTAGE

Commune de COMBLEUX à 14m sur la rive gauche de la Bionne, au point de coordonnées suivantes :

x = 573.700 y = 322.760 z = + 95

3. TERRAINS TRAVERSES PAR LE FORAGE

Captage dans la nappe du calcaire de Beauce

0.0 à 4.0m alluvions de la Bionne (sables et argiles)

4.0 à 9.8m calcaire marneux

9.8 à 14.7m calcaire siliceux

14.7 à 17.2m alternance de calcaire siliceux et de marne

17.2 à 38.0m calcaire siliceux avec passages d'argile

entre: 18.2 et 18.7

20.8 et 21.0

(n. 30.8 et 31.4.

33.6 et 34.0m

4. COUPE TECHNIQUE DE L'OUVRAGE

Réalisé dans les diamètres suivants :

0.0 à 6.15m = 1.00m

6.15 à21.00m = 0.78m

21.00 à31.50m = 0.61m

10>

A l'intérieur du forage, ont été mis en place :

- un tube plein de 0,780 de diamètre entre 0 et 10.75m cimenté à l'extrado
- un tube plein de 0,610 de diamètre entre 0 et 21m cimenté à l'extrado et dans l'espace interannulaire du tube 0,780
- une colonne de captage de 0,510 de diamètre de 19,5 à 38,5m crépinée (perforations circulaires) de 20,5 à 29,5 et de 32,5 à 38,5
- niveau de l'eau dans l'ouvrage en l'absence de tout pompage ≠ de 3m
- niveaux des pompes et électrodes
 - groupe électro-pompe de 80m3/h
 groupe électro-pompe de 30m3/h
 électrode basse arrêt des pompes
 électrode haute remise en marche
 Sompe de surface de 90 m3/h

 21.50m
 18.00m
 17.00m
 8. m.

5. CAPACITE MAXIMALE DE PRELEVEMENT

108m3/h en marche automatique sous 75 de HMT

6. VOLUME MAXIMAL JOURNALIER PREVU

- Centrale Energie ≠ 200m3/j
- distribution eau non potable maxi 1.000m3/j (maxi 50m3/h) mini 600m3/j

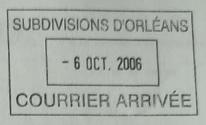
7. UTILISATION

Usages industriels, conditionnement d'air, sanitaires

8. MISE EN SERVICE

Juillet 1972

9. DISPOSITIF DE COMPAGE DU VOLUME POMPE


1 compteur d'eau - marque Compagnie des Compteurs Type WA - Ø 150mm à mécanisme amovible et hélice axiale muni d'une tête émettrice

10. DECLARATION DE FOUILLE

Déclaration 31 Août 1971 Début des traveux Octobre 1971

PREFECTURE DU LOIRET

DIRECTION DES COLLECTIVITES LOCALES ET DE L'AMENAGEMENT

BUREAU DE L'AMENAGEMENT ET DES RISQUES INDUSTRIELS

AFFAIRE SUIVIE PAR TELEPHONE COURRIEL REFERENCE MME PARET
02 38 81 41 30
annick.paret@loiret.pref.gouv.fr

BORDEREAU D'ENVOI

à

M. l'Inspecteur des Installations Classées
Direction Régionale de l'Industrie, de la
Recherche et de l'Environnement
Avenue de la Pomme de Pin
Le Concyr
SAINT CYR EN VAL

ORLEANS, LE

3 OCT. 2006

OBJET: Installation Classée – Société IBM à SAINT JEAN DE BRAYE

REF.: Dossier de la société en date du 25 septembre 2006

DESIGNATION DES PIECES	Nombre	OBSERVATIONS		
Vous avez reçu, directement, un dossier de cessation d'activité présenté par la société IBM pour son site de SAINT JEAN DE BRAYE.	1	Je vous remercie de me faire connaître votre avis sur ce dossier.		

Deurs' fente-Vin Priester ce double données que double avec fultien. Le Préfet, Pour le Préfet, Le Obef de Bureau délégué

Stéphane PERRIN-BOISSO

Annexe 5 : Les fiches terrain des sondages de sols

Référence : A2205-313_R_BB_1b

ENVISOL CLIENT			CLIENT
76 000 ROUEN		Société :	EPFLi
		Nom du site :	Combleux
Intervenant sur site :	BB/AMO	Date de prélèvement :	08/06/2022

		<i>BB</i> (7 little	Pate de preseren	101111	00/00/2022
SONDAGE N°:	S 1	Zone à risque : B1 - Ancien transformateur	Coordonnées :	Y - 62392	2.91 Y = 6756412.74
Technique de forage : tarrière mécanique			Heure début de		9h10
Technique prélo		manuel	Heure de fin de	e forage :	9h20
Profondeur de repère (_	Lithologie			Observations de terrain
0-1 m		Remblai argilo-sableux ma	arron avec silex		Présence de ferraille
1-2 m		Remblai argilo-sableux ma	arron avec silex		Présence de ferraille
Echantillons préle	èvés pour ana	alyse (substances recherchées) :			
Nom échantillon + type de flacon : S1 (0- 1)	PID : 0	code barre a coller	Nom échantillon + type de flacon : S6 (1- 2)	<u>PID : 0</u>	code barre a coller
Nom échantillon + type de flacon : S1 (1- 2)	<u>PID : 0</u>	code barre a coller	Nom échantillon + type de flacon :	PID :	code barre a coller
Conditions clim	natiques : Er	nsoleillé	Rebouchage de	es sondage	es selon l'ordre géologique
SONDAGE N°:	S2	Zone à risque : B1 - Ancien transformateur	Coordonnées :	X = 62396	5.84 Y = 6756420.37
Technique de fo	orage : caro	ttier portatif	Heure début de	e forage :	9h25
Technique prélo	èvement :	manuel	Heure de fin de	e forage :	9h31
Profondeur de repère (Lithologie	Lithologie		
0-1 m		Remblai argileux marr	on compact		Présence de charbon
1-2 m		Remblai argileux marr	on compact		1
Echantillons prélonme échantillon +	<u>-</u>	alyse (substances recherchées) :	Nom échantillon +	DID 0	T
type de flacon : S2 (0-1)	<u>PID : 0</u>	code barre a coller	type de flacon : S14 (2-3)	<u>PID : 0</u>	code barre a coller
Nom échantillon + type de flacon : S2 (1- 2)	PID : 0,2	code barre a coller	Nom échantillon + type de flacon :	PID :	code barre a coller
Conditions clim	natiques : en	nsoleillé	Méthode de ge		cuttings et rebouchage : rebouchage

ENVISOL CLIENT			CLIENT
76 000 ROUEN		Société :	EPFLi
		Nom du site :	Combleux
Intervenant sur site :	BB	Date de prélèvement :	08/06/2022

into vonant	34. 31.3 .		Pate de presere.			00/00/2022
SONDAGE N°:	: S 3	Zone à risque : CT2 - ancien transformateur et cuve d'huiles	Coordonnées	: X = 62412	9.47	Y = 6756381.43
Technique de forage : tarriè		ère mécanique	Heure début de forage :		13h30	
Technique prél	lèvement :	manuel	Heure de fin d	Heure de fin de forage :		13h40
Profondeur de repère	_	Lithologie			Obser	vations de terrain
0-1 m		Remblai argilo-sableux	marron			1
1-2 m		Remblai argilo-sableux	marron			1
	lèvés pour ana	alyse (substances recherchées) :				
Nom échantillon + type de flacon : S3 (0-	<u>PID : 0</u>		Nom échantillon + type de flacon :	<u>PID : 0</u>		
1)		code barre a coller			CC	ode barre a coller
Nom échantillon + type de flacon : S3 (1-	<u>PID : 0</u>		Nom échantillon + type de flacon :	PID :		
2)		code barre a coller			CC	ode barre a coller
Conditions clin	natiques : Er	nsoleillé	Rebouchage d	les sondage	es selon l'ordre	géologique
SONDAGE N° :	· S16	Zone à risque : CT2 - Parking	Coordonnées	· Y = 62/10	Ω <i>1</i> 5	Y = 6756341.76
						1 - 0700041170
Technique de f	orage : caro	ttier portatif	Heure début de forage :		13h45	
Technique prél		manuel	Heure de fin de forage :			13h50
Profondeur de repère		Lithologie			Obser	vations de terrain
0-1 m		Remblai argilo-sableux ma	irron foncé			1
1-2 m		Remblai sablo-argileux ma	rgileux marron foncé			1
Echantillons prél	lèvés pour ana	alyse (substances recherchées) :				
Nom échantillon + type de flacon : S16	PID : 1,5		Nom échantillon + type de flacon :	PID :		
(0-1)		code barre a coller			cc	ode barre a coller
Nom échantillon + type de flacon : S16	PID : 1,2		Nom échantillon + type de flacon :	PID :		
(1-2)		code barre a coller			co	ode barre a coller
Conditions clin	│ natiques:er	 nsoleillé	Méthode de ge	 estion des c	uttings et rebo	ouchage : rebouchage
	-		44			_

	ENVISOL		CLIENT
76 000 ROUEN		Société :	EPFLi
		Nom du site :	Combleux
Intervenant sur site :	BB/AMO	Date de prélèvement :	08/06/2022

			-				
		Zono à ricque : CT2 ancien transferment com	Coordonnáss	V = 60440	7 70	/ _ 6756267 0 <i>4</i>	
SONDAGE N°:		Zone à risque : CT2 - ancien transformateur	Coordonnées :			' = 6756367.24 	
Technique de f	orage : tarri	ere mecanique	Heure début de	e torage :	10h22		
Technique prél		manuel	Heure de fin de	e forage :		10h28	
Profondeur de repère	_	Lithologie			Observa	ations de terrain	
0-1 m		Remblai argilo-sableux gro	ossier marron		/		
1-2 m		Argile faiblement sable	use marron				
Echantillons prél	lèvés pour an	alyse (substances recherchées) :					
Nom échantillon + type de flacon : S4 (0- 1)	PID: 0,2		Nom échantillon + type de flacon : S6 (1- 2)	<u>PID : 0</u>			
		code barre a coller			code	e barre a coller	
Nom échantillon + type de flacon : S4 (1- 2)	PID : 0,2		Nom échantillon + type de flacon :	PID :			
,		code barre a coller			code	e barre a coller	
Conditions clin	natiques : E	nsoleillé	Rebouchage de	es sondage	es selon l'ordre (géologique	
SONDAGE N°:	S15	Zone à risque : CT2 - Fosse de reprise des eaux usées	Coordonnées : X = 62411		4.08 Y	' = 6756366.82	
Technique de f	orage : caro	ttier portatif	Heure début de forage :		13h20		
Technique prél	lèvement :	manuel	Heure de fin de forage :			13h30	
Profondeur de repère	_	Lithologie	Lithologie			ations de terrain	
0-1 m		Remblai de sables grossiers	argileux marron		/		
1-2 m		Remblai argilo-sableux ma	arron compact			1	
2-3 m		Remblai d'argile sableuse marron					
Echantillons prél Nom échantillon +	lèvés pour and PID : 0,3	alyse (substances recherchées) :	Nom échantillon +	PID : 0,9			
type de flacon : S15 (0-1)	<u>FID . 0,3</u>	code barre a coller	type de flacon : S15 (2-3)	<u>FID . 0,9</u>	code	e barre a coller	
Nom échantillon + type de flacon : S15 (1-2)	<u>PID : 0,6</u>		Nom échantillon + type de flacon :	PID :			
		code barre a coller			code	e barre a coller	
Conditions clin	 natiques : er	 nsoleillé	Méthode de ges	stion des c	uttings et rebou	chage : rebouchage	
Conditions climatiques : ensoleillé		Méthode de gestion des cuttings et rebouchage : rebouchage					

ENVISOL		CLIENT	
76 000 ROUEN		Société :	EPFLi
		Nom du site :	Combleux
Intervenant sur site :	BB/AMO	Date de prélèvement :	08/06/2022

			-			
CONDACE NO.	. 0.5			V 00440	0.40	V 0750074 00
		Zone à risque : PVL - Ancien transformateur	Coordonnées :			Y = 6756271.06
Technique de f	orage : tarri	ere mecanique	Heure début de	torage :	9h50	
Technique prél	lèvement :	manuel	Heure de fin de	e forage :		10h05
Profondeur de repère (_	Lithologie			C	Observations de terrain
0-1 m		Remblai de sables grossiers	ossiers argileux marron			1
1-2 m		Remblai de marne blanchâtre et argile s	ableuse marron par pas	sses		<i>I</i>
Echantillons prél	lèvés pour ana	alyse (substances recherchées) :				
Nom échantillon + type de flacon : S5 (0- 1)	PID : 0,2		Nom échantillon + type de flacon : S6 (1- 2)	<u>PID : 0</u>		
		code barre a coller				code barre a coller
Nom échantillon + type de flacon : S5 (1- 2)	PID : 0,2		Nom échantillon + type de flacon :	PID :		
-,		code barre a coller				code barre a coller
Conditions clin	natiques : Ei	nsoleillé	Rebouchage de	es sondage	es selon l'	ordre géologique
SONDAGE N°:	S17	Zone à risque : Parking PVL	Coordonnées :	X = 62415	9.70	Y = 6756266.93
Technique de f	orage : caro	ttier portatif	Heure début de	forage:	10h10	
Technique prél	lèvement :	manuel	Heure de fin de	e forage :		10h15
Profondeur de repère (Lithologie			C	Observations de terrain
0-1 m		Remblai argileux marr	on compact			1
1-2 m		Alternance argile et argile sak	oleuse marron clair			1
Echantillone pról	làvás naur an	alyse (substances recherchées) :				
Nom échantillon +	PID : 0,4	aryse (substances recherences).	Nom échantillon +	PID : 0		
type de flacon : S17 (0-1)		code barre a coller	type de flacon : S14 (2-3)			code barre a coller
Nom échantillon + type de flacon : S17 (1-2)	PID : 0,2		Nom échantillon + type de flacon :	<u>PID :</u>		
		code barre a coller				code barre a coller
Conditions clin	 natiques : er	 nsoleillé				rebouchage : rebouchage
•		des sendenes selen llendre néelenieus				

	ENVISOL	CLIENT		
76 000 ROUEN		Société :	EPFLi	
		Nom du site :	Combleux	
Intervenant sur site :	BB/AMO	Date de prélèvement :	07/06/2022	

	ou. o.to .		Date de preservament	0170072022		
SONDAGE N°:	- S6	Zone à risque : CT1 - Ancien transforma	t Coordonnáas : X = 623	816.18 Y = 6756313.75		
		<u> </u>				
Technique de f	orage : caro	ttier portatif	Heure début de forage	: 13h50		
Technique prél		manuel	Heure de fin de forage	: 14h20		
Profondeur de repère		Lithologie		Observations de terrain		
0-0,08		dalle béton		/		
0,08-0,28		Remblais de sables grossiers	marron orangés	1		
0,28-1		Argile sableuse ma	rron	1		
01-févr		Argile sableuse ma	rron	1		
Echantillons prél	lèvés pour ana	alyse (substances recherchées) :				
Nom échantillon + type de flacon : S6 (0,08-0,28)	PID : 0,2	code barre a coller	Nom échantillon + type de flacon : S6 (1-2)	code barre a coller		
Nom échantillon + type de flacon : S6 (0,28-1)	<u>PID : 0</u>	code barre a coller	Nom échantillon + type de flacon :	code barre a coller		
Conditions clin	natiques : Er	nsoleillé	Rebouchage des sonda	ges selon l'ordre géologique		
SONDAGE N°:	- C1 <i>1</i>	Zone : CT1 - Bac à graisses	Coordonnées : X = 623	823.09 Y = 6756290.38		
Technique de f			Heure début de forage			
Technique prél Profondeur de		manuel	Heure de fin de forage	: 16h10		
repère		Lithologie		Observations de terrain		
0-1 m		Sables argileux marron fo	ncé et silex	/		
1-2 m		Argile sableuse ma	rron	/		
2-3 m		Sable argileux mar	rron	<i>'</i>		
Echantillons prél	lèvés pour ana	alyse (substances recherchées) :				
Nom échantillon + type de flacon : S14 (0-1)	<u>PID : 0</u>	code barre a coller	Nom échantillon + type de flacon : S14 (2-3)	code barre a coller		
Nom échantillon + type de flacon : S14(1- 2)	<u>PID : 0,1</u>	code barre a coller	Nom échantillon + type de flacon :	code barre a coller		
Conditions climatiques : ensoleillé			Méthode de gestion des cuttings et rebouchage : rebouchage			

ENVISOL			CLIENT	
	56 rue Chasselièvre 76 000 ROUEN Tel : 02.32.10.73.31 - Fax : 02.35.98.19.20		EPFLi	
			Combleux	
Intervenant sur site :	BB/AMO	Date de prélèvement :	07/06/2022	

SONDAGE N°:	S8	Zone: CT1 - Cuve de fuel	Coordonnées : X =	623873	3.54 Y = 6756289.78
Technique de fo	orage : tarriè	ere mécanique	Heure début de fora	age :	17h10
Technique prélè	èvement :	manuel	Heure de fin de fora	age:	17h35
Profondeur de repère (Lithologie			Observations de terrain
0-0,05		Terre végéta	е		1
0,05-1		Sable très fin marron légèr	ement argileux		1
1-2 m		Sable très fin marror	argileux		1
2-3 m		Sable très fin marron légèr	ement argileux		1
3-4 m		Argile sableuse marron avec	passées noirâtres		passées noirâtres (MO)
4-5 m		Argile crayeuse	peige		<i>1</i>
Faban431ana nu41	<u> </u>				
Nom échantillon + type de flacon : S8 (0,05-1)	PID : 0,4	alyse (substances recherchées) : code barre a coller	Nom échantillon + type de flacon :	ID:	code barre a coller
Nom échantillon + type de flacon : S8 (1-	PID: 0,2		Nom échantillon + PI type de flacon :	<u>ID :</u>	
2)		code barre a coller	type de nacon .		code barre a coller
Nom échantillon + type de flacon : S8 (2- 3)	<u>PID : 0,4</u>	code barre a coller	Nom échantillon + type de flacon :	ID:	code barre a coller
Nom échantillon + type de flacon : S8 (3- 4)	<u>PID : 1,4</u>	code barre a coller	Nom échantillon + type de flacon :	<u>ID :</u>	code barre a coller
Nom échantillon + type de flacon : S8 (4- 5)	<u>PID : 1,1</u>	code barre a coller	Nom échantillon + type de flacon :	ID :	code barre a coller
Conditions climatiques	: ensoleillé		Méthode de gestion des cutting géologique	ngs et rebo	ouchage : rebouchage des sondages selon l'ordre

ENVISOL		CLIENT	
	rue Chasselièvre	Société :	EPFLi
76 000 ROUEN Tel : 02.32.10.73.31 - Fax : 02.35.98.19.20		Nom du site :	Combleux
Intervenant sur site :	BB/AMO	Date de prélèvement :	07/06/2022

	S9	Zone: CT1 - Cuve de fuel	Coordonnées	: X = 62388	0.51 Y = 6756294.31
Technique de fo	orage : tarri	ère mécanique	Heure début de	Heure début de forage : 16h30	
Technique prélé	èvement :	manuel	Heure de fin d	le forage :	17h05
Profondeur de repère (Lithol	ogie		Observations de terrain
0-0,05	Terre végétale		1		
0,05-1	05-1 Sable grossier argileux marron		/		
1-2 m		Argile sableu	ise marron		/
2-2,5		Argile sableu			
2,5-3,5		Marne I			
3,5-4,5		Marne I	-		très collante
4,5-5		Marne I			humide
-,					
Fahantillana nyál					
Nom échantillon + type de flacon : S9	PID : 0	alyse (substances recherchées) :	Nom échantillon + type de flacon : S9	PID : 0,1	
(0,05-1)		code barre a coller	(4,5-5)		code barre a coller
Nom échantillon + type de flacon : S9 (1-	PID : 0,1		Nom échantillon + type de flacon :	PID :	
2)		code barre a coller			code barre a coller
type de flacon : S9 (2-	PID : 0,2		Nom échantillon + type de flacon :	PID :	
type de flacon : S9 (2-	PID : 0,2	code barre a coller		PID :	code barre a coller
type de flacon : S9 (2- 2,5)		code barre a coller	type de flacon :		code barre a coller
Nom échantillon + type de flacon : S9 (2- 2,5) Nom échantillon + type de flacon : S9 (2,5-3,5)	PID : 0,2	code barre a coller		PID :	
type de flacon : S9 (2-2,5) Nom échantillon + type de flacon : S9		code barre a coller	type de flacon : Nom échantillon +		code barre a coller
Nom échantillon + type de flacon : S9 (2-2,5) Nom échantillon + type de flacon : S9 (2,5-3,5)	PID : 0,1		Nom échantillon + type de flacon : Nom échantillon +	PID :	
Nom échantillon + type de flacon : S9 (2-2,5)		code barre a coller	Nom échantillon + type de flacon :		code barre a coller
Nom échantillon + type de flacon : S9 (2-2,5) Nom échantillon + type de flacon : S9 Nom échantillon + type de flacon : S9	PID : 0,1		Nom échantillon + type de flacon : Nom échantillon +	PID :	

ENVISOL			CLIENT
	rue Chasselièvre 76 000 ROUEN	Société :	EPFLi
	76 000 ROUEN Tel: 02.32.10.73.31 - Fax: 02.35.98.19.20		Combleux
Intervenant sur site :	BB/AMO	Date de prélèvement :	07/06/2022

SONDAGE N°:	S10	Zone: CT1 - Cuve de fuel	Coordonnées	: X = 62387	77.03 Y =6756287.22
Technique de fo	orage : tarri	ère mécanique	Heure début d	e forage :	17h40
Technique prélè	evement :	manuel	Heure de fin d	le forage :	18h10
Profondeur de repère (r		Litholog	Lithologie		Observations de terrain
0-0,05	•	Terre végétale		1	
0,05-1		Sable fin marron légè	Sable fin marron légèrement argileux		
1-2 m		Sable fin marron légè	Sable fin marron légèrement argileux		
2-3 m		Sable fin marron légè	rement argileux		1
3-4 m		Argile sableuse mar	ron avec silex		1
4-5 m		Argile sableuse	e marron		1
Nom échantillons prélètype de flacon : S10	èvés pour an <u>PID : 4,1</u>	alyse (substances recherchées) :	Nom échantillon + type de flacon :	PID :	
(0,05-1)		code barre a coller	type de nacon .		code barre a coller
Nom échantillon + type de flacon : S10 (1- 2)	PID : 1,1		Nom échantillon + type de flacon :	PID:	
-,		code barre a coller			code barre a coller
Nom échantillon +	PID : 1,8		Nom échantillon +	PID :	
type de flacon : S10 (2-3)	<u>1 1D . 1,0</u>		type de flacon :	110.	
		code barre a coller			code barre a coller
Nom échantillon + type de flacon : S10 (3-	PID : 0,8		Nom échantillon + type de flacon :	PID :	
4)		code barre a coller			code barre a coller
Nom échantillon + type de flacon : S10 (4- 5)	<u>PID : 3,6</u>		Nom échantillon + type de flacon :	PID :	
		code barre a coller			code barre a coller
Conditions climatiques :	ensoleillé			es cuttings et reb	oouchage : rebouchage des sondages selon l'ordre
Conditions difficulties : crisoleme			géologique		

ENVISOL			CLIENT	
	56 rue Chasselièvre 76 000 ROUEN Tel : 02.32.10.73.31 - Fax : 02.35.98.19.20		EPFLi	
			Combleux	
Intervenant sur site :	ВВ/АМО	Date de prélèvement :	08/06/2022	

		Zone : CT2 - Ancienne cuve d'acide sulfurique ; Cuve de fuel	Coordonnées : X = 624138			
Technique prélé		manuel	Heure début de Heure de fin d	_	10h35 10h55	
Profondeur de			Tieure de IIII d	e lorage .		
repère (m) :		Lithologie			Observations de terrain	
0-1 m Remblai argilo-sableux		Remblai argilo-sableux g	ossier marron			
1-2 m Sable grossier argileu			ux marron		<i>I</i>	
2-3 m Argile sableuse grossi			ier marron		/	
3-4 n	n	Sable grossier argile	ux marron		1	
4-5 n	n	Argile sableu	se		Humide, très collante	
Fchantillons préle	èvés nour an	alyse (substances recherchées) :				
Nom échantillon + type de flacon : S12 (0-	PID : 1.8		Nom échantillon + type de flacon :	PID:		
1)		code barre a coller			code barre a coller	
Nom échantillon + type de flacon : S12 (1- 2)	<u>PID : 1,9</u>		Nom échantillon + type de flacon :	PID :		
		code barre a coller			code barre a coller	
Nom échantillon +	<u>PID : 1</u>		Nom échantillon +	PID :		
type de flacon : S12 (2-3)		code barre a coller	type de flacon :		code barre a coller	
Nom échantillon + type de flacon : S12 (3-	PID: 0,8		Nom échantillon + type de flacon :	PID :		
4)		code barre a coller			code barre a coller	
Nom échantillon + type de flacon : S12 (4- 5)	PID: 0,2		Nom échantillon + type de flacon :	PID :		
		code barre a coller			code barre a coller	
Conditions climatiques	: ensoleillé		Méthode de gestion de	es cuttings et reb	ouchage : rebouchage des sondages selon l'ordre	
	- 		géologique			

ENVISOL		CLIENT				
56 rue Chasselièvre		Société :	EPFLi			
76 000 ROUEN Tel : 02.32.10.73.31 - Fax : 02.35.98.19.20	Nom du site :	Combleux				
Intervenant sur site :	BB/AMO	Date de prélèvement :	08/06/2022			

SONDAGE N°:	S13	Zone : CT2 - Groupe éle	ectrogène	Coordonnées :	X = 62415	0.82	Y = 6756370.52	
Technique de f	orage : tarriè	ere mécanique		Heure début de	e forage :	11h10		
Technique prélo	èvement :	manuel		Heure de fin d	e forage :		11h40	
Profondeur de repère (Lithologie			Observations de terrain		
0-1 n	n	Rembla	ai sablo-argileux m	narron foncé			1	
1-2 n	n	Arg	jile sableuse marro	on foncé			1	
2-3 n	n	Ar	gile légèrement sa	ableuse			1	
3-4 n	n	Arg	gile crayeuse marr	on clair			1	
4-5 n	n		Marne blanchât	re			Humide	
Nom échantillon +	PID : 1.3	alyse (substances recher	chées) :	Nom échantillon +	PID :			
ype de flacon : S13 (0- l)	<u> </u>			type de flacon :	<u> </u>			
		code barre a d	coller				code barre a coller	
Nom échantillon + ype de flacon : S13 (1-	PID : 1,6			Nom échantillon + type de flacon :	PID :			
2)		code barre a					code barre a coller	
Nom échantillon + ype de flacon : S13 (2-	<u>PID : 0,4</u>			Nom échantillon + type de flacon :	PID :			
5)		code barre a	coller				code barre a coller	
Nom échantillon + ype de flacon : S13 (3- I)	<u>PID : 0,8</u>			Nom échantillon + type de flacon :	<u>PID :</u>			
		code barre a	coller				code barre a coller	
Nom échantillon +	PID : 0,4			Nom échantillon +	PID :			
ype de flacon : S13 (4- 5)	<u> • • ; •</u>			type de flacon :	<u></u>		codo harra o caller	
		code barre a d	coner				code barre a coller	
Conditions climatiques	: ensoleillé			Méthode de gestion de géologique	s cuttings et reb	ouchage : rebouch	nage des sondages selon l'or	dre
				g-ologique				

ENVISOL		CLIENT				
56 rue Chasselièvre 76 000 ROUEN Tel : 02.32.10.73.31 - Fax : 02.35.98.19.20	Société :	EPFLi				
	Nom du site :	Combleux				
Intervenant sur site :	ВВ	Date de prélèvement :	08/06/2022			

SONDAGE N°:	S18	Zone : Zone de dépôt potentiel (sud-est du site)	Coordonnées : X =	= 623955	.79 Y = 6756236.62		
Technique de fo	orage : tarriè	ère mécanique	Heure début de for	age: 1	4h30		
Technique prélè	èvement :	manuel	Heure de fin de fo	rage :	14h45		
Profondeur de l'ouvrage / Lithologie repère (m) :					Observations de terrain		
0-1 m	1	Argile marneuse bla	nchâtre		1		
1-2 m	1	Marne argileuse bl	anche		1		
2-3 m	1	Marne argileuse bl	anche		Humide		
3-4 m	1	Marne argileuse bl	anche		Humide, collante		
Echantillons prélè	èvés pour ana	alyse (substances recherchées) :					
Nom échantillon + type de flacon : S18 (0- 1)	<u>PID: 0,3</u>		Nom échantillon + type de flacon :	PID:			
		code barre a coller			code barre a coller		
Nom échantillon +	PID : 0,4		Nom échantillon +	PID :			
type de flacon : S18 (1- 2)	<u>1 1D . 0,4</u>		type de flacon :	<u> </u>			
		code barre a coller			code barre a coller		
Nom échantillon + type de flacon : S18 (2-	PID : 0,6		Nom échantillon + type de flacon :	PID :			
3)		code barre a coller			code barre a coller		
Nom échantillon + type de flacon : S18 (3- 4)	<u>PID : 0</u>		Nom échantillon + type de flacon :	PID :			
		code barre a coller			code barre a coller		
Nom échantillon +	PID :		Nom échantillon +	PID :			
type de flacon :	<u> </u>	code barre a coller	type de flacon :	-	code barre a coller		
		Code parte à Collet			Code parte a coller		
Conditions climatiques :	: ensoleillé		Méthode de gestion des cutti géologique	ings et rebou	uchage : rebouchage des sondages selon l'ordre		

ENVISOL		CLIENT				
56 rue Chasselièvre 76 000 ROUEN Tel : 02.32.10.73.31 - Fax : 02.35.98.19.20	Société :	EPFLi				
	Nom du site :	Combleux				
Intervenant sur site :	ВВ	Date de prélèvement :	08/06/2022			

SONDAGE N°:	S19	Zone : Zone de dépôt potentiel (sud-est du site)	Coordonnées :	X = 62398	6.07 Y = 6756235.39	
Technique de f	orage : tarriè	ère mécanique	Heure début de	e forage :	14h	
Technique prél	èvement :	manuel	Heure de fin d	e forage :	14h25	
Profondeur de repère (Lithologie			Observations de terrain	
0-0,1	m	Terre végéta	ile		1	
0,1-1	m	Marne argileuse l	olanche		1	
1-2 r	m	Marne argileuse l	olanche		Humide	
2-3 r	m	Marne argileuse l	olanche		Humide	
3-4 r	m	Marne argileuse k	olanche		Humide	
Nom échantillon +	lèvés pour ana <u>PID : 0,2</u>	alyse (substances recherchées) :	Nom échantillon +	PID :		
type de flacon : S19 (0,1-1)		code barre a coller	type de flacon :		code barre a coller	
Nom échantillon + type de flacon : S19 (1-	<u>PID : 0</u>		Nom échantillon + type de flacon :	PID :		
2)		code barre a coller			code barre a coller	
Nom échantillon + type de flacon : S19 (2- 3)	<u>PID : 0</u>		Nom échantillon + type de flacon :	PID :		
		code barre a coller			code barre a coller	
Nom échantillon +	PID : 0		Nom échantillon +	PID :		
type de flacon : S19 (3- 4)		code barre a coller	type de flacon :		code barre a coller	
Nom échantillon + type de flacon :	PID :		Nom échantillon + type de flacon :	PID :		
		code barre a coller			code barre a coller	
Conditions climatiques	: ensoleillé		Méthode de gestion de géologique	es cuttings et reb	ouchage : rebouchage des sondages selon l'ordre	

ENVISOL			CLIENT		
56 rue Chasselièvre		Société :	EPFLi		
	76 000 ROUEN Tel : 02.32.10.73.31 - Fax : 02.35.98.19.20		Combleux		
Intervenant sur site :	BB/AMO	Date de prélèvement :	07/06/2022		

SONDAGE N°: S20		Zone : CT1 - Moteurs, ancien transformateur	Coordonnées :	X = 62386	3.91 Y = 6756286.77	
Technique de f	orage : tarriè	ère mécanique	Heure début de forage :		15h30	
Technique prél	èvement :	manuel	Heure de fin d	e forage :	15h55	
Profondeur de repère (Lithologie			Observations de terrain	
0-0,15		dalle béton			1	
0,15-0,30		Remblais sabl	eux		1	
0,30-0,40		Dalle béton			1	
0,40-1,3		Sables et silex m	arron		1	
1,3-2		Argile sableuse mar	ron foncé		1	
					<i>1</i>	
Echantillons nrél	lèvés nour ans	alyse (substances recherchées) :				
Nom échantillon + type de flacon : S20 (0,4-1,3)	PID : 8	code barre a coller	Nom échantillon + type de flacon :	PID :	code barre a coller	
Nom échantillon + type de flacon : S20	PID : 2,3		Nom échantillon + type de flacon :	PID :		
(1,3-2)		code barre a coller			code barre a coller	
Nom échantillon + type de flacon :	PID :		Nom échantillon + type de flacon :	PID :		
		code barre a coller			code barre a coller	
Nom échantillon + type de flacon :	PID :	code barre a coller	Nom échantillon + type de flacon :	PID :	code barre a coller	
Nom échantillon + type de flacon :	PID :	code barre a coller	Nom échantillon + type de flacon :	PID :	code barre a coller	
Conditions climatiques	: ensoleillé		Méthode de gestion de géologique	es cuttings et reb	ouchage : rebouchage des sondages selon l'ordre	

Annexe 6 : Bordereaux d'analyses du laboratoire – résultats :	Annexe 6: Bordereaux	d'analy	/ses du	laboratoire -	· résultats se
---	-----------------------------	---------	---------	---------------	----------------

Référence : A2205-313_R_BB_1b

AL-West B.V.

accrédités et/ou externalisés sont marqués du symbole " *) ".

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

ENVISOL 2-4, rue Hector Berlioz 38110 LA TOUR DU PIN **FRANCE**

> Date 20.06.2022 N° Client 35004955

RAPPORT D'ANALYSES

n° Cde 1165024 A2205-313_EPFLi_Combleux_sol

N° échant. 365360 Solide / Eluat

Date de validation 10.06.2022 Prélèvement 07.06.2022 Prélèvement par: Client

Lixiviation Fraction >4mm (EN12457-2) Masse brute Mh pour lixiviation Lixiviation (EN 12457-2) Volume de lixiviant L ajouté pour l'extract	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Lixiviation					
Fraction >4mm (EN12457-2)	%	° 26,4	0,1		Selon norme lixiviation
Masse brute Mh pour lixiviation	*) g	° 95	1		Selon norme lixiviation
Lixiviation (EN 12457-2)		0			NF EN 12457-2
Volume de lixiviant L ajouté pour l'extract	ion *) ml	900	1		Selon norme lixiviation
Prétraitement des échantill	lons				
Masse échantillon total inférieure à 2 kg	kg	° 0,63	0		
Prétraitement de l'échantillon		0			Conforme à NEN-EN 16179
Broyeur à mâchoires		0			méthode interne
Matière sèche	%	° 95,5	0,01	+/- 1	NEN-EN 15934 ; EN1288
Calcul des Fractions solub	les				
Fraction soluble cumulé (var. L/S)	*) mg/kg Ms	0 - 1000	1000		Selon norme lixiviation
Antimoine cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Arsenic cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Baryum cumulé (var. L/S)	*) mg/kg Ms	0,13	0,1		Selon norme lixiviation
Cadmium cumulé (var. L/S)	*) mg/kg Ms	0 - 0,001	0,001		Selon norme lixiviation
Chlorures cumulé (var. L/S)	*) mg/kg Ms	32	1		Selon norme lixiviation
Chrome cumulé (var. L/S)	*) mg/kg Ms	0,05	0,02		Selon norme lixiviation
COT cumulé (var. L/S)	*) mg/kg Ms	12	10		Selon norme lixiviation
Cuivre cumulé (var. L/S)	*) mg/kg Ms	0 - 0,02	0,02		Selon norme lixiviation
Fluorures cumulé (var. L/S)	*) mg/kg Ms	3,0	1		Selon norme lixiviation
Indice phénol cumulé (var. L/S)	*) mg/kg Ms	0 - 0,1	0,1		Selon norme lixiviation
Mercure cumulé (var. L/S)	*) mg/kg Ms	0 - 0,0003	0,0003		Selon norme lixiviation
Molybdène cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Nickel cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Plomb cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Sélénium cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Sulfates cumulé (var. L/S)	*) mg/kg Ms	120	50		Selon norme lixiviation
Zinc cumulé (var. L/S)	*) mg/kg Ms	0 - 0,02	0,02		Selon norme lixiviation
Analyses Physico-chimiqu	es				
pH-H2O		° 8,7	0,1	+/- 10	Cf. NEN-ISO 10390 (sol uniquement)
COT Carbone Organique Total	mg/kg Ms	8600	1000	+/- 16	conforme ISO 10694 (2008)

AL-West B.V.
Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Spécification des échantillons	S6 (0.0	8-0.28)			
	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Minéralisation à l'eau régale	0				NF-EN 16174; NF EN 13657 (déchets)
Métaux					
Arsenic (As)	mg/kg Ms	7,8	1	+/- 15	Conforme à EN-ISO 11885, EN 16174
Cadmium (Cd)	mg/kg Ms	0,1	0,1	+/- 21	Conforme à EN-ISO 11885, EN 16174
Chrome (Cr)	mg/kg Ms	14	0,2	+/- 12	Conforme à EN-ISO 11885, EN 16174
Cuivre (Cu)	mg/kg Ms	13	0,2	+/- 20	Conforme à EN-ISO 11885, EN 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conforme à ISO 16772 et EN 16174
Nickel (Ni)	mg/kg Ms	11	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Plomb (Pb)	mg/kg Ms	20	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Zinc (Zn)	mg/kg Ms	47	1	+/- 22	Conforme à EN-ISO 11885, EN 16174
Hydrocarbures Aromatiques	Polycycliques (ISO)			
Naphtalène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Acénaphtylène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
	"				/ : I / : NE EN 40404

Hydrocarbures A	Aromatiques	Polyc	ycliques	s (ISO))

Tiyarocarbarca Aromanque	3 i orycychiques (i	00)		
Naphtalène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Acénaphtylène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Acénaphtène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Fluorène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Phénanthrène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Anthracène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Fluoranthène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Pyrène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Benzo(a)anthracène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Chrysène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Benzo(b)fluoranthène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Benzo(k)fluoranthène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Benzo(a)pyrène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
HAP (6 Borneff) - somme	mg/kg Ms	n.d.		équivalent à NF EN 16181
Somme HAP (VROM)	mg/kg Ms	n.d.		équivalent à NF EN 16181
HAP (EPA) - somme	mg/kg Ms	n.d.		équivalent à NF EN 16181
Composés aremetiques		· · · · · · · · · · · · · · · · · · ·	·	

					Date	20.06.20
RAPPORT D'ANALYSES					N° Client	35004
n° Cde	116	6 5024 A2205-313_l	EPFLi C	ombleux s	ol	
N° échant.		360 Solide / Eluat				
Spécification des échantillons	56	(0.08-0.28)				
	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode	
Minéralisation à l'eau régale	Office	o Nesuitat	Quant.	Nesultat 70		16174; NF EN 1365
					NI EN	(déchets)
Métaux						
Arsenic (As)	mg/kg Ms	7,8	1	+/- 15	Conforme	e à EN-ISO 11885, 1 16174
Cadmium (Cd)	mg/kg Ms	0,1	0,1	+/- 21	Conforme	e à EN-ISO 11885, I
Chrome (Cr)	mg/kg Ms	14	0,2	+/- 12	Conforme	16174 e à EN-ISO 11885,
Cuivre (Cu)	mg/kg Ms	13	0,2	+/- 20	Conforme	16174 e à EN-ISO 11885,
				17 20		16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05			ne à ISO 16772 et E 16174
Nickel (Ni)	mg/kg Ms	11	0,5	+/- 11	Conforme	e à EN-ISO 11885, 16174
Plomb (Pb)	mg/kg Ms	20	0,5	+/- 11	Conforme	e à EN-ISO 11885, 16174
Zinc (Zn)	mg/kg Ms	47	1	+/- 22	Conforme	è à EN-ISO 11885, 16174
Hydrocarbures Aromatiques	Polycycliau	as (ISO)				10174
Naphtalène	mg/kg Ms	<0,050	0,05		éguival	ent à NF EN 1618
Acénaphtylène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Acénaphtène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Fluorène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Phénanthrène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Anthracène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Fluoranthène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Pyrène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Benzo(a)anthracène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Chrysène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Benzo(b)fluoranthène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Benzo(k)fluoranthène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Benzo(k)nuoranmene Benzo(a)pyrène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
	mg/kg Ms					ent à NF EN 1618
Benzo(g,h,i)pérylène Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
HAP (6 Borneff) - somme	mg/kg Ms	n.d.				ent à NF EN 1618
Somme HAP (VROM) HAP (EPA) - somme	mg/kg Ms	n.d. n.d.				ent à NF EN 1618
Composés aromatiques	ilig/kg ivis	n.u.			equivai	enta Ni Liviot
Benzène	mg/kg Ms	<0,050	0.05			ISO 22155
Toluène	mg/kg Ms	<0,050 <0,050	0,05	+		ISO 22155 ISO 22155
	mg/kg Ms	<0,050 <0,050	0,05	+		
Ethylbenzène m.n. Yulàna	mg/kg Ms			+		ISO 22155
m,p-Xylène	mg/kg Ms	<0,10	0,1	+ +		ISO 22155
o-Xylène Nontralàna	mg/kg Ms	<0,050	0,05	+ +		ISO 22155
Naphtalène	mg/kg Ms	<0,10	0,1			ISO 22155
Somme Xylènes	*) mg/kg Ms	n.d.				ISO 22155
BTEX total	/ IIIg/kg IVIS	n.d.				ISO 22155
COHV			0.00	1		100 00455
Chlorure de Vinyle	mg/kg Ms	<0,02	0,02			ISO 22155
Dichlorométhane	mg/kg Ms	<0,05	0,05			ISO 22155

COHV

met	Chlorure de Vinyle	mg/kg Ms	<0,02	0,02	ISO 22155
arai	Dichlorométhane	mg/kg Ms	<0,05	0,05	ISO 22155

RvA L 005

AL-West B.V.

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

symbole " *)						Date N° Client	20.06.2022 35004955
	RAPPORT D'ANALYSES	4405		-DEI: 0		al	
מ	n° Cde		5024 A2205-313_E	:PFLI_C	ombieux_s	OI	
5	N° échant.		360 Solide / Eluat				
ā	Spécification des échantillons	S6 (I	0.08-0.28)				
evod externalises sont marques do		Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode	•
S D	Trichlorométhane	mg/kg Ms	<0,05	0,05			ISO 22155
į	Tétrachlorométhane	mg/kg Ms	<0,05	0,05			ISO 22155
5	Trichloroéthylène	mg/kg Ms	<0,05	0,05			ISO 22155
5	Tétrachloroéthylène	mg/kg Ms	<0,05	0,05			ISO 22155
j	1,1,1-Trichloroéthane	mg/kg Ms	<0,05	0,05			ISO 22155
5	1,1,2-Trichloroéthane	mg/kg Ms	<0,05	0,05			ISO 22155
)	1,1-Dichloroéthane	mg/kg Ms	<0,10	0,03			ISO 22155
;	1,2-Dichloroéthane	mg/kg Ms	<0,15	0,05			ISO 22155
5	cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	0,025			ISO 22155
5	1,1-Dichloroéthylène	mg/kg Ms	<0,10	0,020			ISO 22155
2	Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	0,025			ISO 22155
2	Somme cis/trans-1,2-Dichloroéthylènes	mg/kg Ms	n.d.	0,020			ISO 22155
deuts les paramenes mon acciedites	Hydrocarbures totaux (ISO)	3 3 -					.00
3	Fraction aliphatique C5-C6	mg/kg Ms	<0,20	0,2		conforme	è à NEN-EN-ISO 16558-1
ž	Fraction C5-C10	mg/kg Ms	<1,0 ×)	0, <u>z</u> 1			à NEN-EN-ISO 16558-1
2	Fraction >C6-C8	mg/kg Ms	<0,40 ×)	0,4			à NEN-EN-ISO 16558-1
Ś	Fraction C8-C10	mg/kg Ms	<0,40 ×)	0,4			à NEN-EN-ISO 16558-1
	Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	0,4			à NEN-EN-ISO 16558-1
=	Fraction aromatique >C6-C8	mg/kg Ms	<0,20	0,2			à NEN-EN-ISO 16558-1
1	Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	0,2			à NEN-EN-ISO 16558-1
3	Fraction aromatique >C8-C10	mg/kg Ms	<0,20	0,2			è à NEN-EN-ISO 16558-1
	Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	20			ISO 16703
)	Fraction C10-C12	*) mg/kg Ms	<4,0	4			ISO 16703
5	Fraction C12-C16	*) mg/kg Ms	<4,0	4			ISO 16703
EN 130/1EC 1/023.2017.	Fraction C16-C20	*) mg/kg Ms	<2,0	2			ISO 16703
į	Fraction C20-C24	*) mg/kg Ms	2,8	2	+/- 21		ISO 16703
	Fraction C24-C28	*) mg/kg Ms	4,7	2	+/- 21		ISO 16703
5	Fraction C28-C32	*) mg/kg Ms	5,5	2	+/- 21		ISO 16703
<u>a</u>	Fraction C32-C36	*) mg/kg Ms	3,2	2	+/- 21		ISO 16703
5	Fraction C36-C40	*) mg/kg Ms	<2,0	2			ISO 16703
Ď	Polychlorobiphényles						
ges	Somme 6 PCB	mg/kg Ms	0,049 x)			N	EN-EN 16167
5	Somme 7 PCB (Ballschmiter)	mg/kg Ms	0,049 ×)				EN-EN 16167
SS	PCB (28)	mg/kg Ms	<0,001	0,001			EN-EN 16167
Ę	PCB (52)	mg/kg Ms	<0,001	0,001			EN-EN 16167
BV sont accredites selon	PCB (101)	mg/kg Ms	0,005	0,001	+/- 34		EN-EN 16167
	PCB (118)	mg/kg Ms	<0,001	0,001			EN-EN 16167
;;	DCD (420)	ma/ka Ma	0.040	0,004	. / 20		EN EN 40407

_	. 65 (116)		40,00.	0,00.		11211 211 10101		
AL-West	PCB (138)	mg/kg Ms	0,016	0,001	+/- 30	NEN-EN 16167		
	PCB (153)	mg/kg Ms	0,014	0,001	+/- 22	NEN-EN 16167		
	PCB (180)	mg/kg Ms	0,014	0,001	+/- 12	NEN-EN 16167		
par	Analyses sur éluat après lixiviation							
réalisés	L/S cumulé	ml/g	10,0	0,1		Selon norme lixiviation		
	Conductivité électrique	μS/cm	95,8	5	+/- 10	Selon norme lixiviation		
	pH		8,4	0	+/- 5	Selon norme lixiviation		
ètres	Température	°C	20,8	0		Selon norme lixiviation		
amè	Analyses Physico-chimiques sur éluat							
oara	Résidu à sec	mg/l	<100	100		Equivalent à NF EN ISO 15216		
Lesp						page 3 de 5		

Analyses Physico-chimiques sur élua	ıt
-------------------------------------	----

AL-West B.V.

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 20.06.2022 N° Client 35004955

(2004)

Conforme à EN-ISO 17294-2

(2004)

Conforme à EN-ISO 17294-2

(2004) Conforme à EN-ISO 17294-2

(2004)

RAPPORT D'ANALYSES

ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du symbole " *) ".

Plomb (Pb)

Zinc (Zn)

la norme

sont

Sélénium (Se)

n° Cde 1165024 A2205-313_EPFLi_Combleux_sol

N° échant. 365360 Solide / Eluat

Spécification des échantillons S6 (0.08-0.28)

			Limite	Incert.	
	Unité	Résultat	Quant.	Résultat %	Méthode
Fluorures (F)	mg/l	0,3	0,1	+/- 10	Conforme à ISO 10359-1, conforme à EN 16192
Indice phénol	mg/l	<0,010	0,01		NEN-EN 16192
Chlorures (CI)	mg/l	3,2	0,1	+/- 10	Conforme à ISO 15923-1
Sulfates (SO4)	mg/l	12	5	+/- 10	Conforme à ISO 15923-1
COT	mg/l	1,2	1	+/- 10	conforme EN 16192
Métaux sur éluat					
Antimoine (Sb)	µg/I	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Arsenic (As)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Baryum (Ba)	μg/I	13	10	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Cadmium (Cd)	μg/I	<0,1	0,1		Conforme à EN-ISO 17294-2 (2004)
Chrome (Cr)	μg/I	5,3	2	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Cuivre (Cu)	μg/I	<2,0	2		Conforme à EN-ISO 17294-2 (2004)
Mercure	μg/I	° <0,03	0,03		méthode interne (conforme NEN- EN-ISO 12846)
Molybdène (Mo)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Nickel (Ni)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2

5

5

2

< 5.0

<5,0

<2,0

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

μg/l

μg/l

μg/l

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé.
Le calcul de l' incertitude de mesure analytique combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l' expression de l' incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordtest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d' élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance).

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Début des analyses: 10.06.2022 Fin des analyses: 17.06.2022

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

Les résultats portent et correspondent à l'éche correspondent à l'éche sile sur le correspondent à l'éche sur le correspondent

TESTING RVA L 005

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110 e-Mail: info@al-west.nl, www.al-west.nl

AGROLAB GROUP
Your labs. Your service.

Date 20.06.2022 N° Client 35004955

RAPPORT D'ANALYSES

Spécification des échantillons

S6 (0.08-0.28)

AL-West B.V. Mme Fatima-Zahra Saati, Tel. 33/380680132 Chargée relation clientèle

accrédités et/ou externalisés sont marqués du symbole " *) ".

BV sont accrédités selon la norme EN ISO/IEC 17025:2017. Seuls les paramètres non

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

ENVISOL 2-4, rue Hector Berlioz 38110 LA TOUR DU PIN **FRANCE**

> 20.06.2022 Date N° Client 35004955

RAPPORT D'ANALYSES

n° Cde 1165024 A2205-313_EPFLi_Combleux_sol

N° échant. 365361 Solide / Eluat

Date de validation 10.06.2022 Prélèvement 07.06.2022 Prélèvement par: Client Spécification des échantillons S6 (0.28-1)

	Unité		Résultat	Quant.	Résultat %	Méthode
Lixiviation						
Fraction >4mm (EN12457-2)	%	•	4,8	0,1		Selon norme lixiviation
Masse brute Mh pour lixiviation	*) g	•	110	1		Selon norme lixiviation
Lixiviation (EN 12457-2)		0				NF EN 12457-2
Volume de lixiviant L ajouté pour l'extraction	*) ml		900	1		Selon norme lixiviation
Prétraitement des échantillon	s					
Masse échantillon total inférieure à 2 kg	kg	•	0,62	0		
Prétraitement de l'échantillon		•				Conforme à NEN-EN 16179
Matière sèche	%	0	83,5	0,01	+/- 1	NEN-EN 15934 ; EN12880
Calcul des Fractions solubles						

Limite

Calcul des Fractions solubles				
Fraction soluble cumulé (var. L/S)	mg/kg Ms	2300	1000	Selon norme lixiviation
Antimoine cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
Arsenic cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
Baryum cumulé (var. L/S)	mg/kg Ms	0,34	0,1	Selon norme lixiviation
Cadmium cumulé (var. L/S)	mg/kg Ms	0 - 0,001	0,001	Selon norme lixiviation
Chlorures cumulé (var. L/S)	mg/kg Ms	150	1	Selon norme lixiviation
Chrome cumulé (var. L/S)	mg/kg Ms	0 - 0,02	0,02	Selon norme lixiviation
COT cumulé (var. L/S)	mg/kg Ms	12	10	Selon norme lixiviation
Cuivre cumulé (var. L/S)	mg/kg Ms	0,04	0,02	Selon norme lixiviation
Fluorures cumulé (var. L/S)	mg/kg Ms	5,0	1	Selon norme lixiviation
Indice phénol cumulé (var. L/S)	mg/kg Ms	0 - 0,1	0,1	Selon norme lixiviation
Mercure cumulé (var. L/S)	mg/kg Ms	0 - 0,0003	0,0003	Selon norme lixiviation
Molybdène cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
Nickel cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
Plomb cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation

ļ	Sulfates cumulé (var. L/S)	*)	mg/kg Ms	430	50			Selon norme lixiviation			
;	Zinc cumulé (var. L/S)	*)	mg/kg Ms	0,04	0,02			Selon norme lixiviation			
)	Analyses Physico-chimiques										
5	pH-H2O			° 8,3	0,1	+/- 10		Cf. NEN-ISO 10390 (sol			

7500

0 - 0,05

0,05

1000

+/- 16

st	Plomb cumulé (var. L/S)	mg/kg Ms	
Š	Sélénium cumulé (var. L/S)	mg/kg Ms	
AL-West	Sulfates cumulé (var. L/S)	mg/kg Ms	
	Zinc cumulé (var. L/S)	mg/kg Ms	
és p	Analyses Physico-chimiques		
paramètres réalisés par	рН-Н2О		۰
es re	COT Carbone Organique Total	mg/kg Ms	
iètre	Prétraitement pour analyses de	es métaux	
ran	Minéralisation à l'eau régale		۰
Les			

NF-EN 16174; NF EN 13657 Minéralisation à l'eau régale (déchets)

> page 1 de 5 **RvA** L 005

Selon norme lixiviation

conforme ISO 10694 (2008)

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Métaux					
Arsenic (As)	mg/kg Ms	18	1	+/- 15	Conforme à EN-ISO 11885, EN 16174
Cadmium (Cd)	mg/kg Ms	0,1	0,1	+/- 21	Conforme à EN-ISO 11885, EN 16174
Chrome (Cr)	mg/kg Ms	31	0,2	+/- 12	Conforme à EN-ISO 11885, EN 16174
Cuivre (Cu)	mg/kg Ms	14	0,2	+/- 20	Conforme à EN-ISO 11885, EN 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conforme à ISO 16772 et EN 16174
Nickel (Ni)	mg/kg Ms	21	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Plomb (Pb)	mg/kg Ms	25	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Zinc (Zn)	mg/kg Ms	58	1	+/- 22	Conforme à EN-ISO 11885, EN 16174

					Date	20.06.20
					N° Client	350049
RAPPORT D'ANALYSES						
n° Cde	116502	4 A2205-313_E	EPFLi_C	combleux_sc	ol	
N° échant.	365361	Solide / Eluat				
Spécification des échantillons	S6 (0.2	8-1)				
•	`	,	Limite	Incert.		
	Unité	Résultat	Quant.	Résultat %	Méthode	
Métaux						
Arsenic (As)	mg/kg Ms	18	1	+/- 15	Conform	e à EN-ISO 11885, E 16174
Cadmium (Cd)	mg/kg Ms	0,1	0,1	+/- 21	Conform	e à EN-ISO 11885, E
Chrome (Cr)	mg/kg Ms	31	0,2	+/- 12	Conform	16174 e à EN-ISO 11885, E
. ,						16174
Cuivre (Cu)	mg/kg Ms	14	0,2	+/- 20	Conform	e à EN-ISO 11885, E 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conforr	ne à ISO 16772 et El
Nickel (Ni)	mg/kg Ms	21	0,5	+/- 11	Conform	<u>16174</u> e à EN-ISO 11885, E
,					Conform	16174 e à EN-ISO 11885, E
Plomb (Pb)	mg/kg Ms	25	0,5	+/- 11		16174
Zinc (Zn)	mg/kg Ms	58	1	+/- 22	Conform	e à EN-ISO 11885, E 16174
Hydrocarbures Aromatiques I	Polycycliques (I	SO)			l	
Naphtalène	mg/kg Ms	<0,050	0,05		éguiva	lent à NF EN 1618
Acénaphtylène	mg/kg Ms	<0,050	0,05			lent à NF EN 1618
Acénaphtène	mg/kg Ms	<0,050	0,05			lent à NF EN 1618
Fluorène	mg/kg Ms	0,078	0,05	+/- 46		lent à NF EN 1618
Phénanthrène	mg/kg Ms	1,8	0,05	+/- 20	·	lent à NF EN 1618
Anthracène	mg/kg Ms	0,38	0,05	+/- 24		lent à NF EN 1618
Fluoranthène	mg/kg Ms	2,2	0,05	+/- 17		lent à NF EN 1618
Pyrène	mg/kg Ms	2,3	0,05	+/- 19		lent à NF EN 1618
Benzo(a)anthracène	mg/kg Ms	0,95	0,05	+/- 14		lent à NF EN 1618
Chrysène	mg/kg Ms	1,1	0,05	+/- 14		lent à NF EN 1618
Benzo(b)fluoranthène	mg/kg Ms	0,85	0,05	+/- 12		lent à NF EN 1618
Benzo(k)fluoranthène	mg/kg Ms	0,43	0,05	+/- 14		lent à NF EN 1618
Benzo(a)pyrène	mg/kg Ms	1,0	0,05	+/- 14		lent à NF EN 1618
Dibenzo(a,h)anthracène	mg/kg Ms	<0,20 ^{m)}	0,03	T/- 14		lent à NF EN 1618
Benzo(g,h,i)pérylène	mg/kg Ms	0,63	0,2	./ 11		lent à NF EN 1618
Indéno(1,2,3-cd)pyrène	mg/kg Ms	0.01	0,05	+/- 14 +/- 17		lent à NF EN 1618
HAP (6 Borneff) - somme	mg/kg Ms	0,81 5,92	0,05	T/- 17		lent à NF EN 1618
Somme HAP (VROM)	mg/kg Ms	9,30 ×)				lent à NF EN 1618
	mg/kg Ms	12,5 ×				lent à NF EN 1618
HAP (EPA) - somme	ilig/kg ivis	12,5			equiva	lent a INF LIN 1010
Composés aromatiques						
Benzène	mg/kg Ms	<0,050	0,05			ISO 22155
Toluène	mg/kg Ms	<0,050	0,05			ISO 22155
Ethylbenzène	mg/kg Ms	<0,050	0,05			ISO 22155
m,p-Xylène	mg/kg Ms	<0,10	0,1			ISO 22155
o-Xylène	mg/kg Ms	<0,050	0,05			ISO 22155
Naphtalène	mg/kg Ms	<0,10	0,1			ISO 22155
Somme Xylènes	mg/kg Ms	n.d.				ISO 22155
BTEX total	*) mg/kg Ms	n.d.				ISO 22155
COHV						
Chlorure de Vinyle	mg/kg Ms	<0,02	0,02			ISO 22155
Dichlorométhane	mg/kg Ms	<0,05	0,05			ISO 22155
Trichlorométhane	mg/kg Ms	<0,05	0,05			ISO 22155
Tétrachlorométhane	mg/kg Ms	<0,05	0,05			ISO 22155

^	,		4.
Com	noses	aroma	atiques

ક	Composés aromatiques				
Ĕ	Benzène	mg/kg Ms	<0,050	0,05	ISO 22155
ń	Toluène	mg/kg Ms	<0,050	0,05	ISO 22155
<u> </u>	Ethylbenzène	mg/kg Ms	<0,050	0,05	ISO 22155
ß	m,p-Xylène	mg/kg Ms	<0,10	0,1	ISO 22155
?	o-Xylène	mg/kg Ms	<0,050	0,05	ISO 22155
ζ	Naphtalène	mg/kg Ms	<0,10	0,1	ISO 22155
ğ	Somme Xylènes	mg/kg Ms	n.d.		ISO 22155
ה ט	BTEX total	mg/kg Ms	n.d.		ISO 22155

COHV

Ñ	~~				
2	Chlorure de Vinyle	mg/kg Ms	<0,02	0,02	ISO 22155
ב ב	Dichlorométhane	mg/kg Ms	<0,05	0,05	ISO 22155
=	Trichlorométhane	mg/kg Ms	<0,05	0,05	ISO 22155
<u>8</u>	Tétrachlorométhane	mg/kg Ms	<0,05	0,05	ISO 22155

RvA L 005

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

			Limite	Incert.	
	Unité	Résultat	Quant.	Résultat %	Méthode
Trichloroéthylène	mg/kg Ms	<0,05	0,05		ISO 22155
Tétrachloroéthylène	mg/kg Ms	<0,05	0,05		ISO 22155
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
1,1,2-Trichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
1,1-Dichloroéthane	mg/kg Ms	<0,10	0,1		ISO 22155
1,2-Dichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	0,025		ISO 22155
1,1-Dichloroéthylène	mg/kg Ms	<0,10	0,1		ISO 22155
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	0,025		ISO 22155
Somme cis/trans-1,2-Dichloroéthylènes	mg/kg Ms	n.d.			ISO 22155

Hydr	ocarbu	res to	taux (ISO)
nvui	UCAI DU	ii es ioi	laux i	IJUI

nydrocarbures totaux (150)					
Fraction aliphatique C5-C6	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Fraction C5-C10	mg/kg Ms	<1,0 ×)	1		conforme à NEN-EN-ISO 16558-1
Fraction >C6-C8	mg/kg Ms	<0,40 ×)	0,4		conforme à NEN-EN-ISO 16558-1
Fraction C8-C10	mg/kg Ms	<0,40 ×)	0,4		conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Hydrocarbures totaux C10-C40	mg/kg Ms	30,4	20	+/- 21	ISO 16703
Fraction C10-C12	mg/kg Ms	<4,0	4		ISO 16703
Fraction C12-C16	mg/kg Ms	<4,0	4		ISO 16703
Fraction C16-C20	mg/kg Ms	9,0	2	+/- 21	ISO 16703
Fraction C20-C24	mg/kg Ms	5,7	2	+/- 21	ISO 16703
Fraction C24-C28	mg/kg Ms	5,9	2	+/- 21	ISO 16703
Fraction C28-C32	mg/kg Ms	4,3	2	+/- 21	ISO 16703
Fraction C32-C36	mg/kg Ms	<2,0	2		ISO 16703
Fraction C36-C40	mg/kg Ms	<2,0	2		ISO 16703

Polychlorobiphényles

Somme 6 PCB	mg/kg Ms	0,0020 x)			NEN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	0,0020 x)			NEN-EN 16167
PCB (28)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
PCB (52)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
PCB (101)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
PCB (118)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
PCB (138)	mg/kg Ms	0,001	0,001	+/- 30	NEN-EN 16167
PCB (153)	mg/kg Ms	0,001	0,001	+/- 22	NEN-EN 16167
PCB (180)	mg/kg Ms	<0,001	0,001		NEN-EN 16167

Analyses sur éluat après lixiviation

RAPPORT D'ANALYSES					Date	20.06.202
RAPPORT D'ANALYSES					N° Client	3500495
	44054	304 40005 040 5	-DEL: 0		-1	
n° Cde N° échant. Spécification des échantillons		024 A2205-313_E	PFLI_C	ombieux_s	OI	
⋛ N° échant.		61 Solide / Eluat				
Spécification des échantillons	S6 (0	.28-1)				
Trichloroéthylène Tétrachloroéthylène 1,1,1-Trichloroéthane 1,1,2-Trichloroéthane 1,1-Dichloroéthane 1,2-Dichloroéthane 1,2-Dichloroéthène 1,1-Dichloroéthylène Trans-1,2-Dichloroéthylène Somme cis/trans-1,2-Dichloroéthylènes Hydrocarbures totaux (ISO) Fraction aliphatique C5-C6 Fraction C5-C10 Fraction C8-C10 Fraction aliphatique >C6-C8 Fraction aliphatique >C6-C8 Fraction aromatique >C6-C8		5 7	Limite	Incert.	****	
<u> </u>	Unité	Résultat	Quant.	Résultat %	Méthode	9
Trichloroéthylène	mg/kg Ms	<0,05	0,05			ISO 22155
Tétrachloroéthylène	mg/kg Ms	<0,05	0,05			ISO 22155
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	0,05			ISO 22155
1,1,2-Trichloroéthane 1,1-Dichloroéthane	mg/kg Ms	<0,05	0,05			ISO 22155
1,2-Dichloroéthane	mg/kg Ms mg/kg Ms	<0,10 <0,05	0,1 0,05			ISO 22155 ISO 22155
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	0,025			ISO 22155
1,1-Dichloroéthylène	mg/kg Ms	<0,10	0,020			ISO 22155
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	0,025			ISO 22155
Somme cis/trans-1,2-Dichloroéthylènes	mg/kg Ms	n.d.	-,			ISO 22155
Hydrocarbures totaux (ISO)		,			-	
Fraction aliphatique C5-C6	mg/kg Ms	<0,20	0,2		conform	e à NEN-EN-ISO 16558-1
Fraction C5-C10	mg/kg Ms	<1,0 ^{x)}	<u>0,</u> 1		conform	e à NEN-EN-ISO 16558-1
Fraction >C6-C8	mg/kg Ms	<0,40 ×)	0,4		conform	e à NEN-EN-ISO 16558-1
Fraction C8-C10	mg/kg Ms	<0,40 ×)	0,4		conform	e à NEN-EN-ISO 16558-1
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	0,2		conform	e à NEN-EN-ISO 16558-1
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	0,2			e à NEN-EN-ISO 16558-1
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	0,2			e à NEN-EN-ISO 16558-1
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	0,2		conform	e à NEN-EN-ISO 16558-1
Fraction aliphatique >C8-C10 Fraction aromatique >C8-C10 Hydrocarbures totaux C10-C40 Fraction C10-C12 Fraction C12-C16	mg/kg Ms	30,4	20	+/- 21		ISO 16703
Fraction C10-C12	*) mg/kg Ms	<4,0	4			ISO 16703
	*) mg/kg Ms	<4,0	4	/ 64		ISO 16703
Fraction C16-C20 Fraction C20-C24 Fraction C24-C28	*) mg/kg Ms	9,0	2	+/- 21		ISO 16703
Fraction C20-C24 Fraction C24-C28	*) mg/kg Ms *) mg/kg Ms	5,7 5,9	2	+/- 21 +/- 21		ISO 16703 ISO 16703
Fraction C24-C26 Fraction C28-C32	*) mg/kg Ms	4,3	2	+/- 21		ISO 16703
Fraction C32-C36	*) mg/kg Ms	<2,0	2	+/- 21		ISO 16703
Fraction C32-C36 Fraction C36-C40	*) mg/kg Ms	<2,0 <2,0	2			ISO 16703
_	mg/kg Wo	\2,0				150 10705
i orycritoropipitettytes	mg/kg Ms	0 0000 x)				IENI ENI 40407
Somme 6 PCB Somme 7 PCB (Ballschmiter) PCB (28) PCB (52) PCB (101) PCB (118) PCB (138)	mg/kg Ms	0,0020 x) 0,0020 x)			· · · · · · · · · · · · · · · · · · ·	NEN-EN 16167 NEN-EN 16167
PCB (28)	mg/kg Ms	<0,0020	0,001			NEN-EN 16167
PCB (52)	mg/kg Ms	<0,001	0,001			NEN-EN 16167
PCB (101)	mg/kg Ms	<0,001	0,001			NEN-EN 16167
PCB (118)	mg/kg Ms	<0,001	0,001			IEN-EN 16167
	mg/kg Ms	0,001	0,001	+/- 30		IEN-EN 16167
PCB (153)	mg/kg Ms	0,001	0,001	+/- 22		IEN-EN 16167
PCB (180)	mg/kg Ms	<0,001	0,001		N	IEN-EN 16167
Analyses sur éluat après lixi	viation					
L/S cumulé	ml/g	10,0	0,1		Sele	on norme lixiviation
Conductivité électrique	μS/cm	280	5	+/- 10	Seld	on norme lixiviation
pH		8,1	0	+/- 5	Sele	on norme lixiviation
Température	°C	19,7	0		Sele	on norme lixiviation
Analyses Physico-chimique	s sur éluat					
Résidu à sec	mg/l	230	100	+/- 22	Equiva	lent à NF EN ISO 15216
PCB (153) PCB (180) Analyses sur éluat après lixi L/S cumulé Conductivité électrique pH Température Analyses Physico-chimique Résidu à sec Fluorures (F) Indice phénol	mg/l	0,5	0,1	+/- 10	Conforme	e à ISO 10359-1, conform
Indice phénol	mg/l	<0,010	0,01		N.	à EN 16192 JEN-EN 16192
III IGIOG DITGITOI	IIIIU/I	~U.UIU	0,01	1 1	P	1∟11 -∟11 1∪1 <i>3</i> ∠

Analyses Physico-chimiques sur éluat

ı٨						
5	Résidu à sec	mg/l	230	100	+/- 22	Equivalent à NF EN ISO 15216
<u></u>	Fluorures (F)	mg/l	0,5	0,1	+/- 10	Conforme à ISO 10359-1, conforme à EN 16192
2	Indice phénol	ma/l	<0.010	0,01		NEN-EN 16192

RvA L 005

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 20.06.2022 N° Client 35004955

RAPPORT D'ANALYSES

symbole " *) ".

SO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du n° Cde 1165024 A2205-313_EPFLi_Combleux_sol

N° échant. 365361 Solide / Eluat

Spécification des échantillons S6 (0.28-1)

			Limite	incert.	
	Unité	Résultat	Quant.	Résultat %	Méthode
Chlorures (CI)	mg/l	15	0,1	+/- 10	Conforme à ISO 15923-1
Sulfates (SO4)	mg/l	43	5	+/- 10	Conforme à ISO 15923-1
COT	mg/l	1,2	1	+/- 10	conforme EN 16192
Métaux sur éluat					
Antimoine (Sb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Arsenic (As)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Baryum (Ba)	µg/l	34	10	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Cadmium (Cd)	μg/l	<0,1	0,1		Conforme à EN-ISO 17294-2 (2004)
Chrome (Cr)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)
Cuivre (Cu)	μg/l	3,5	2	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Mercure	μg/l	° <0,03	0,03		méthode interne (conforme NEN- EN-ISO 12846)
Molybdène (Mo)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Nickel (Ni)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Plomb (Pb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Sélénium (Se)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Zinc (Zn)	μg/l	3,7	2	+/- 10	Conforme à EN-ISO 17294-2 (2004)

Limita

Incort

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé.

Le calcul de l' incertitude de mesure analytique combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l' expression de l' incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordtest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d'élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance).

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Début des analyses: 10.06.2022 Fin des analyses: 17.06.2022

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été recu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

selon

accrédités

es paramètres réalisés par AL-West

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

m) Etant donnée l'influence perturbatrice de l'échantillon, les limites de quantification ont été relevées.

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 20.06.2022 N° Client 35004955

RAPPORT D'ANALYSES

n° Cde 1165024 A2205-313_EPFLi_Combleux_sol N° échant. 365361 Solide / Eluat

Spécification des échantillons S6 (0.28-1)

AL-West B.V. Mme Fatima-Zahra Saati, Tel. 33/380680132 Chargée relation clientèle

et/ou externalisés sont marqués du symbole " *) ".

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

ENVISOL 2-4, rue Hector Berlioz 38110 LA TOUR DU PIN **FRANCE**

> 20.06.2022 Date N° Client 35004955

RAPPORT D'ANALYSES

n° Cde 1165024 A2205-313_EPFLi_Combleux_sol

N° échant. 365362 Solide / Eluat

Date de validation 10.06.2022 Prélèvement 07.06.2022 Prélèvement par: Client

Lixiviation					
Fraction >4mm (EN12457-2)	%	° 2	5,9	0,1	Selon norme lixiviation
Masse brute Mh pour lixiviation *)	g	° 1	00	1	Selon norme lixiviation
Lixiviation (EN 12457-2)		۰			NF EN 12457-2
Volume de lixiviant L ajouté pour l'extraction *)	ml	9	000	1	Selon norme lixiviation
Drátraitament des échantillens			•		

Prétraitement des échantillons

Masse échantillon total inférieure à 2 kg	kg	0	0,72 0		
Prétraitement de l'échantillon		0			Conforme à NEN-EN 16179
Broyeur à mâchoires		0			méthode interne
Matière sèche	%	٥	90,0 0,01	+/- 1	NEN-EN 15934 ; EN12880

Calcul des Fractions solubles

Fraction soluble cumulé (var. L/S)	mg/kg Ms	4000	1000	Selon norme lixiviation
Antimoine cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
Arsenic cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
Baryum cumulé (var. L/S)	mg/kg Ms	0,16	0,1	Selon norme lixiviation
Cadmium cumulé (var. L/S)	mg/kg Ms	0 - 0,001	0,001	Selon norme lixiviation
Chlorures cumulé (var. L/S)	mg/kg Ms	510	1	Selon norme lixiviation
Chrome cumulé (var. L/S)	mg/kg Ms	0 - 0,02	0,02	Selon norme lixiviation
COT cumulé (var. L/S)	mg/kg Ms	45	10	Selon norme lixiviation
Cuivre cumulé (var. L/S)	mg/kg Ms	0,07	0,02	Selon norme lixiviation
Fluorures cumulé (var. L/S)	mg/kg Ms	2,0	1	Selon norme lixiviation
Indice phénol cumulé (var. L/S)	mg/kg Ms	0 - 0,1	0,1	Selon norme lixiviation
Mercure cumulé (var. L/S)	mg/kg Ms	0,0006	0,0003	Selon norme lixiviation
Molybdène cumulé (var. L/S)	mg/kg Ms	0,05	0,05	Selon norme lixiviation
Nickel cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
Plomb cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
Sélénium cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
Sulfates cumulé (var. L/S)	mg/kg Ms	180	50	Selon norme lixiviation
Zinc cumulé (var. L/S)	mg/kg Ms	0 - 0,02	0,02	Selon norme lixiviation

Lixiviation Fraction >4mm (EN12457-2) Masse brute Mh pour lixiviation Lixiviation (EN 12457-2) Volume de lixiviant L ajouté pour l'extraction		0 (0.4-1.3)	District	Limite	Incert.	AACII I.
	Unité		Résultat	Quant.	Résultat %	Méthode
Lixiviation	lor	0	25.0		<u> </u>	Outro no marco Problem
Fraction >4mm (EN12457-2)	*) 0	0	25,9	0,1		Selon norme lixiviation
Masse brute Mh pour lixiviation	*) g		100	1		Selon norme lixiviation
Lixiviation (EN 12457-2)	*\	,				NF EN 12457-2
	*) ml		900	1		Selon norme lixiviation
Prétraitement des échantillor	S					
Masse échantillon total inférieure à 2 kg	kg	•	0,72	0		
Prétraitement de l'échantillon		•				Conforme à NEN-EN 16179
Broyeur à mâchoires		•				méthode interne
Matière sèche	%	•	90,0	0,01	+/- 1	NEN-EN 15934 ; EN1288
Calcul des Fractions solubles Fraction soluble cumulé (var. L/S) Antimoine cumulé (var. L/S) Arsenic cumulé (var. L/S) Baryum cumulé (var. L/S)	5					
Fraction soluble cumulé (var. L/S)	*) mg/kg Ms		4000	1000		Selon norme lixiviation
Antimoine cumulé (var. L/S)	*) mg/kg Ms		0 - 0.05	0,05		Selon norme lixiviation
Arsenic cumulé (var. L/S)	*) mg/kg Ms		0 - 0,05	0,05		Selon norme lixiviation
Baryum cumulé (var. L/S)	*) mg/kg Ms		0,16	0,1		Selon norme lixiviation
Cadmium cumulé (var. L/S)	*) mg/kg Ms	(0,001	0,001		Selon norme lixiviation
Chlorures cumulé (var. L/S)	*) mg/kg Ms		510	1		Selon norme lixiviation
Chrome cumulé (var. L/S)	*) mg/kg Ms		0 - 0,02	0,02		Selon norme lixiviation
COT cumulé (var. L/S)	*) mg/kg Ms		45	10		Selon norme lixiviation
Cuivre cumulé (var. L/S)	*) mg/kg Ms		0,07	0,02		Selon norme lixiviation
Fluorures cumulé (var. L/S)	*) mg/kg Ms		2,0	1		Selon norme lixiviation
Cadmium cumulé (var. L/S) Chlorures cumulé (var. L/S) Chrome cumulé (var. L/S) COT cumulé (var. L/S) Cuivre cumulé (var. L/S) Fluorures cumulé (var. L/S) Indice phénol cumulé (var. L/S) Mercure cumulé (var. L/S)	*) mg/kg Ms		0 - 0,1	0,1		Selon norme lixiviation
Mercure cumulé (var. L/S)	*) mg/kg Ms		0,0006	0,0003		Selon norme lixiviation
Molybdène cumulé (var. L/S)	*) mg/kg Ms		0,05	0,05		Selon norme lixiviation
Nickel cumulé (var. L/S)	*) mg/kg Ms		0 - 0,05	0,05		Selon norme lixiviation
Plomb cumulé (var. L/S)	*) mg/kg Ms		0 - 0,05	0,05		Selon norme lixiviation
Sélénium cumulé (var. L/S)	*) mg/kg Ms		0 - 0,05	0,05		Selon norme lixiviation
Sulfates cumulé (var. L/S)	*) mg/kg Ms		180	50		Selon norme lixiviation
Zinc cumulé (var. L/S)	*) mg/kg Ms		0 - 0,02	0,02		Selon norme lixiviation
Analyses Physico-chimiques						
pH-H2O		0	11,0	0,1	+/- 10	Cf. NEN-ISO 10390 (sol uniquement)
COT Carbone Organique Total	mg/kg Ms		3500	1000	+/- 16	conforme ISO 10694 (2008)
Sulfates cumulé (var. L/S) Zinc cumulé (var. L/S) Analyses Physico-chimiques pH-H2O COT Carbone Organique Total Prétraitement pour analyses			3300	1000	177-10	CONTOURNE TOO TOOS4 (2000

AL-West B.V.
Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Specification des echantillons	520 (U	.4-1.3)			
	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Minéralisation à l'eau régale	0				NF-EN 16174; NF EN 13657 (déchets)
Métaux					
Arsenic (As)	mg/kg Ms	6,5	1	+/- 15	Conforme à EN-ISO 11885, EN 16174
Cadmium (Cd)	mg/kg Ms	<0,1	0,1		Conforme à EN-ISO 11885, EN 16174
Chrome (Cr)	mg/kg Ms	18	0,2	+/- 12	Conforme à EN-ISO 11885, EN 16174
Cuivre (Cu)	mg/kg Ms	6,1	0,2	+/- 20	Conforme à EN-ISO 11885, EN 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conforme à ISO 16772 et EN 16174
Nickel (Ni)	mg/kg Ms	9,1	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Plomb (Pb)	mg/kg Ms	9,8	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Zinc (Zn)	mg/kg Ms	19	1	+/- 22	Conforme à EN-ISO 11885, EN 16174
Hydrocarbures Aromatiques	Polycycliques ((ISO)			
Naphtalène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Acénanhtylène	ma/ka Ms	<0.050	0.05		éguivalent à NF EN 16181

Tiyarocarbarca Aromanque	3 i orycychiques (i	00)		
Naphtalène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Acénaphtylène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Acénaphtène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Fluorène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Phénanthrène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Anthracène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Fluoranthène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Pyrène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Benzo(a)anthracène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Chrysène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Benzo(b)fluoranthène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Benzo(k)fluoranthène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Benzo(a)pyrène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
HAP (6 Borneff) - somme	mg/kg Ms	n.d.		équivalent à NF EN 16181
Somme HAP (VROM)	mg/kg Ms	n.d.		équivalent à NF EN 16181
HAP (EPA) - somme	mg/kg Ms	n.d.		équivalent à NF EN 16181
Composés aremetiques		· · · · · · · · · · · · · · · · · · ·	·	

					Date	20.06.20
DADDODT DIAMAL VOCO					N° Client	350049
RAPPORT D'ANALYSES						
n° Cde		24 A2205-313_I	=PFLi_C	combleux_s	Ol	
N° échant.	365362	Solide / Eluat				
Spécification des échantillons	S20 (0.	4-1.3)				
			Limite	Incert.		
	Unité	Résultat	Quant.	Résultat %	Méthode	
Minéralisation à l'eau régale	•				NF-EN 1	6174; NF EN 13657 (déchets)
Métaux					l	(docrioto)
Arsenic (As)	mg/kg Ms	6,5	1	+/- 15	Conforme	à EN-ISO 11885, E
Cadmium (Cd)	mg/kg Ms	<0,1	0,1		Conforme	16174 à EN-ISO 11885, E
, ,		•				16174
Chrome (Cr)	mg/kg Ms	18	0,2	+/- 12	Conforme	à EN-ISO 11885, E 16174
Cuivre (Cu)	mg/kg Ms	6,1	0,2	+/- 20	Conforme	à EN-ISO 11885, E
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conform	16174 e à ISO 16772 et E
		•		./ 44	Conformo	16174 à EN-ISO 11885, E
Nickel (Ni)	mg/kg Ms	9,1	0,5	+/- 11		16174
Plomb (Pb)	mg/kg Ms	9,8	0,5	+/- 11	Conforme	à EN-ISO 11885, E 16174
Zinc (Zn)	mg/kg Ms	19	1	+/- 22	Conforme	à EN-ISO 11885, E
Harden and the American	D-1	100)				16174
Hydrocarbures Aromatiques	mg/kg Ms		0.05		ó qui vole	ont à NE EN 1619
Naphtalène Acénaphtylène	mg/kg Ms	<0,050 <0,050	0,05 0,05			ent à NF EN 1618 ent à NF EN 1618
Acénaphtène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Fluorène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Phénanthrène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Anthracène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Fluoranthène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Pyrène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Benzo(a)anthracène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
						ent à NF EN 1618
Chrysène	mg/kg Ms	<0,050	0,05			
Benzo(b)fluoranthène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Benzo(k)fluoranthène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Benzo(a)pyrène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
HAP (6 Borneff) - somme	mg/kg Ms	n.d.			équivale	ent à NF EN 1618
Somme HAP (VROM)	mg/kg Ms	n.d.			équivale	ent à NF EN 1618
HAP (EPA) - somme	mg/kg Ms	n.d.				ent à NF EN 1618
Composés aromatiques						
Benzène	mg/kg Ms	<0,050	0,05			SO 22155
Toluène	mg/kg Ms	<0,050	0,05			SO 22155
Ethylbenzène	mg/kg Ms	<0,050	0,05			SO 22155
m,p-Xylène	mg/kg Ms	<0,10	0,1			SO 22155
o-Xylène	mg/kg Ms	<0,050	0,05			SO 22155
Naphtalène	mg/kg Ms	<0,10	0,00			SO 22155
Somme Xylènes	mg/kg Ms	n.d.	٥, ١	+		SO 22155
BTEX total	*) mg/kg Ms	n.d.				SO 22155
COHV	g,g 1110	11.0.				JO 22 100
	mg/kg Ms	-0.00	0.02			SO 22155
Chlorure de Vinyle		<0,02	0,02			SO 22155
Dichlorométhane	mg/kg Ms	<0,05	0,05			SO 22155

COHV

mèt	Chlorure de Vinyle	mg/kg Ms	<0,02	0,02	ISO 22155
araı	Dichlorométhane	mg/kg Ms	<0,05	0,05	ISO 22155

RvA L 005

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 20.06.2022 N° Client 35004955

RAPPORT D'ANALYSES

és du symbole " *) ".

n° Cde 1165024 A2205-313_EPFLi_Combleux_sol

Nº áchant 365362 Solide / Flust

N° échant.	3653	62 Solide / Eluat			
Spécification des échantillons	S20 (0.4-1.3)			
	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Trichlorométhane	mg/kg Ms	<0,05	0,05		ISO 22155
Tétrachlorométhane	mg/kg Ms	<0,05	0,05		ISO 22155
Trichloroéthylène	mg/kg Ms	0,09	0,05	+/- 16	ISO 22155
Tétrachloroéthylène	mg/kg Ms	<0,05	0,05	.,	ISO 22155
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
1,1,2-Trichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
1,1-Dichloroéthane	mg/kg Ms	<0,10	0,1		ISO 22155
1,2-Dichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
cis-1,2-Dichloroéthène	mg/kg Ms	0,033	0,025	+/- 20	ISO 22155
1,1-Dichloroéthylène	mg/kg Ms	<0,10	0,1	.,	ISO 22155
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	0,025		ISO 22155
Somme cis/trans-1,2-Dichloroéthylènes	mg/kg Ms	0 x)	0,020		ISO 22155
Hydrocarbures totaux (ISO)	1 0 0	-			100 == 100
	mg/kg Ms	-0.20	0,2		conforme à NEN-EN-ISO 165
Fraction aliphatique C5-C6 Fraction C5-C10	mg/kg Ms	<0,20 <1,0 *)	<u>0,∠</u> 1		conforme à NEN-EN-ISO 165
	mg/kg Ms	<0,40 ×)	0,4		conforme à NEN-EN-ISO 165
Fraction >C6-C8 Fraction C8-C10	mg/kg Ms	0,74 ×)	0,4	+/- 35	conforme à NEN-EN-ISO 165
Fraction co-C10 Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	0,4	+/- 33	conforme à NEN-EN-ISO 165
	mg/kg Ms				conforme à NEN-EN-ISO 165
Fraction aromatique >C6-C8		<0,20	0,2		conforme à NEN-EN-ISO 165
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20 0,74	0,2	+/- 35	conforme à NEN-EN-ISO 165
Fraction aromatique >C8-C10	mg/kg Ms mg/kg Ms		0,2	+/- 33	
Hydrocarbures totaux C10-C40 Fraction C10-C12	*) mg/kg Ms	<20,0 <4,0	20 4		ISO 16703 ISO 16703
Fraction C12-C16	*) mg/kg Ms		4		ISO 16703
Fraction C16-C20	*) mg/kg Ms	<4,0		+/- 21	ISO 16703
Fraction C20-C24	*) mg/kg Ms	2,4	2	+/- 21	
	*) mg/kg Ms	2,4	2	+/- 21	ISO 16703
Fraction C24-C28 Fraction C28-C32	*) mg/kg Ms	2,4	2	+/- 21	ISO 16703 ISO 16703
Fraction C32-C36	*) mg/kg Ms	<2,0	2		ISO 16703
Fraction C36-C40	*) mg/kg Ms	<2,0			
	/ IIIg/kg IVIS	<2,0	2		ISO 16703
Polychlorobiphényles		.1			
Somme 6 PCB	mg/kg Ms	0,011 ^{x)}			NEN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	0,011 ^{x)}			NEN-EN 16167
PCB (28)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
PCB (52)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
PCB (101)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
PCB (118)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
PCB (138)	mg/kg Ms	0,004	0,001	+/- 30	NEN-EN 16167
PCB (153)	mg/kg Ms	0,004	0,001	+/- 22	NEN-EN 16167
PCB (180)	mg/kg Ms	0,003	0,001	+/- 12	NEN-EN 16167
Analyses sur éluat après lixiv	viation				
L/S cumulé	ml/g	10,0	0,1		Selon norme lixiviation
Conductivité électrique	μS/cm	820	5	+/- 10	Selon norme lixiviation
рН		11,6	0	+/- 5	Selon norme lixiviation
Température	°C	20,7	0		Selon norme lixiviation
Analyses Physico-chimiques	sur éluat	,		· ·	
Résidu à sec	mg/l	400	100	+/- 22	Equivalent à NF EN ISO 152
i rosidu a sec	lilig/i	700	100	T/- ZZ	

Somme 6 PCB	mg/kg Ms	0,011 ×)		NEN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	0,011 ×)		NEN-EN 16167
PCB (28)	mg/kg Ms	<0,001 0,001		NEN-EN 16167
PCB (52)	mg/kg Ms	<0,001 0,001		NEN-EN 16167
PCB (101)	mg/kg Ms	<0,001 0,001		NEN-EN 16167
PCB (118)	mg/kg Ms	<0,001 0,001		NEN-EN 16167
PCB (138)	mg/kg Ms	0,004 0,001	+/- 30	NEN-EN 16167
PCB (153)	mg/kg Ms	0,004 0,001	+/- 22	NEN-EN 16167
PCB (180)	mg/kg Ms	0.003 0.001	+/- 12	NEN-EN 16167

Šes	L/S cumulé	ml/g	10,0	0,1		Selon norme lixiviation
ä	Conductivité électrique	μS/cm	820	5	+/- 10	Selon norme lixiviation
<u>e</u>	рН		11,6	0	+/- 5	Selon norme lixiviation
ĕ	Température	°C	20,7	0		Selon norme lixiviation
11						

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 20.06.2022 N° Client 35004955

RAPPORT D'ANALYSES

n° Cde 1165024 A2205-313_EPFLi_Combleux_sol

N° échant. 365362 Solide / Eluat

Spécification des échantillons S20 (0.4-1.3)

	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Fluorures (F)	mg/l	0,2	0,1	+/- 10	Conforme à ISO 10359-1, conforme à EN 16192
Indice phénol	mg/l	<0,010	0,01		NEN-EN 16192
Chlorures (CI)	mg/l	51	0,1	+/- 10	Conforme à ISO 15923-1
Sulfates (SO4)	mg/l	18	5	+/- 10	Conforme à ISO 15923-1
COT	mg/l	4,5	1	+/- 10	conforme EN 16192
Métaux sur éluat					

Metaux	sur é	luat
--------	-------	------

EN ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du symbole " *) ".

Métaux sur éluat					
Antimoine (Sb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Arsenic (As)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Baryum (Ba)	μg/l	16	10	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Cadmium (Cd)	μg/l	<0,1	0,1		Conforme à EN-ISO 17294-2 (2004)
Chrome (Cr)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)
Cuivre (Cu)	μg/l	6,6	2	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Mercure	μg/l	° 0,06	0,03	+/- 20	méthode interne (conforme NEN- EN-ISO 12846)
Molybdène (Mo)	μg/l	5,4	5	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Nickel (Ni)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Plomb (Pb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Sélénium (Se)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Zinc (Zn)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé. Le calcul de l' incertitude de mesure analytique combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l' expression de l' incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordtest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d' élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance).

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Début des analyses: 10.06.2022 Fin des analyses: 17.06.2022

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110 e-Mail: info@al-west.nl, www.al-west.nl

Date 20.06.2022 N° Client 35004955

RAPPORT D'ANALYSES

n° Cde 1165024 A2205-313_EPFLi_Combleux_sol N° échant. **365362** Solide / Eluat Spécification des échantillons

S20 (0.4-1.3)

AL-West B.V. Mme Fatima-Zahra Saati, Tel. 33/380680132 Chargée relation clientèle

et/ou externalisés sont marqués du symbole " *) ".

Seuls les paramètres non

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

ENVISOL 2-4, rue Hector Berlioz 38110 LA TOUR DU PIN **FRANCE**

> 20.06.2022 Date N° Client 35004955

RAPPORT D'ANALYSES

n° Cde 1165024 A2205-313_EPFLi_Combleux_sol

N° échant. 365363 Solide / Eluat

Date de validation 10.06.2022 Prélèvement 07.06.2022 Prélèvement par: Client Spécification des échantillons S14 (1-2)

		Unité		Résultat	Quant.	Résultat %	Méthode
	Lixiviation						
Ĺ	Fraction >4mm (EN12457-2)	%	•	10,5	0,1		Selon norme lixiviation
	Masse brute Mh pour lixiviation *)	g	•	100	1		Selon norme lixiviation
	Lixiviation (EN 12457-2)		•				NF EN 12457-2
,	Volume de lixiviant L ajouté pour l'extraction *)	ml		900	1		Selon norme lixiviation

Limite

Incert.

Prétraitement des échantillons

Masse échantillon total inférieure à 2 kg	kg	0	0,65	0		
Prétraitement de l'échantillon		•				Conforme à NEN-EN 16179
Broyeur à mâchoires		0				méthode interne
Matière sèche	%	•	87,2	0,01	+/- 1	NEN-EN 15934 ; EN12880

Calcul des Fractions solubles

Fraction soluble cumulé (var. L/S)	mg/kg Ms	0 - 1000	1000	Selon norme lixiviation
Antimoine cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
Arsenic cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
Baryum cumulé (var. L/S)	mg/kg Ms	0,18	0,1	Selon norme lixiviation
Cadmium cumulé (var. L/S)	mg/kg Ms	0 - 0,001	0,001	Selon norme lixiviation
Chlorures cumulé (var. L/S)	mg/kg Ms	12	1	Selon norme lixiviation
Chrome cumulé (var. L/S)	mg/kg Ms	0 - 0,02	0,02	Selon norme lixiviation
COT cumulé (var. L/S)	mg/kg Ms	28	10	Selon norme lixiviation
Cuivre cumulé (var. L/S)	mg/kg Ms	0,05	0,02	Selon norme lixiviation
Fluorures cumulé (var. L/S)	mg/kg Ms	7,0	1	Selon norme lixiviation
Indice phénol cumulé (var. L/S)	mg/kg Ms	0 - 0,1	0,1	Selon norme lixiviation
Mercure cumulé (var. L/S)	mg/kg Ms	0 - 0,0003	0,0003	Selon norme lixiviation
Molybdène cumulé (var. L/S)	mg/kg Ms	0,06	0,05	Selon norme lixiviation
Nickel cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
Plomb cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
Sélénium cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
Sulfates cumulé (var. L/S)	mg/kg Ms	130	50	Selon norme lixiviation
Zinc cumulé (var. L/S)	mg/kg Ms	0 - 0,02	0,02	Selon norme lixiviation

Volume de lixiviant E ajoute pour rextraction	. 1111	900	ı		Selon norme lixiviation
Prétraitement des échantillo	ns				
Masse échantillon total inférieure à 2 kg	kg	° 0,65	0		
Prétraitement de l'échantillon		0			Conforme à NEN-EN 1617
Broyeur à mâchoires		0			méthode interne
Matière sèche	%	° 87,2	0,01	+/- 1	NEN-EN 15934 ; EN128
Calcul des Fractions soluble	es				
Fraction soluble cumulé (var. L/S)	*) mg/kg Ms	0 - 1000	1000		Selon norme lixiviation
Antimoine cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Arsenic cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Baryum cumulé (var. L/S)	*) mg/kg Ms	0,18	0,1		Selon norme lixiviation
Cadmium cumulé (var. L/S)	*) mg/kg Ms	0 - 0,001	0,001		Selon norme lixiviation
Chlorures cumulé (var. L/S)	*) mg/kg Ms	12	1		Selon norme lixiviation
Chrome cumulé (var. L/S)	*) mg/kg Ms	0 - 0,02	0,02		Selon norme lixiviation
COT cumulé (var. L/S)	*) mg/kg Ms	28	10		Selon norme lixiviation
Cuivre cumulé (var. L/S)	*) mg/kg Ms	0,05	0,02		Selon norme lixiviation
Fluorures cumulé (var. L/S)	*) mg/kg Ms	7,0	1		Selon norme lixiviation
Indice phénol cumulé (var. L/S)	*) mg/kg Ms	0 - 0,1	0,1		Selon norme lixiviation
Mercure cumulé (var. L/S)	*) mg/kg Ms	0 - 0,0003	0,0003		Selon norme lixiviation
Molybdène cumulé (var. L/S)	*) mg/kg Ms	0,06	0,05		Selon norme lixiviation
Nickel cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Plomb cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Sélénium cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Sulfates cumulé (var. L/S)	*) mg/kg Ms	130	50		Selon norme lixiviation
Zinc cumulé (var. L/S)	*) mg/kg Ms	0 - 0,02	0,02		Selon norme lixiviation
Analyses Physico-chimique	s				
pH-H2O		° 8,4	0,1	+/- 10	Cf. NEN-ISO 10390 (sol uniquement)
·		6300	1000	+/- 16	conforme ISO 10694 (200

AL-West B.V.
Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Minéralisation à l'eau régale		0			NF-EN 16174; NF EN 13657 (déchets)
Métaux					
Arsenic (As)	mg/kg Ms	19	1	+/- 15	Conforme à EN-ISO 11885, EN 16174
Cadmium (Cd)	mg/kg Ms	<0,1	0,1		Conforme à EN-ISO 11885, EN 16174
Chrome (Cr)	mg/kg Ms	61	0,2	+/- 12	Conforme à EN-ISO 11885, EN 16174
Cuivre (Cu)	mg/kg Ms	15	0,2	+/- 20	Conforme à EN-ISO 11885, EN 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conforme à ISO 16772 et EN 16174
Nickel (Ni)	mg/kg Ms	23	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Plomb (Pb)	mg/kg Ms	17	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Zinc (Zn)	mg/kg Ms	50	1	+/- 22	Conforme à EN-ISO 11885, EN 16174

	A 4*	-	(100)
Hydrocarbures	Aromatiques	Polycycliques	asor

Tiyarocarbarca Aromanque	3 i orycychiques (i	00)		
Naphtalène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Acénaphtylène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Acénaphtène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Fluorène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Phénanthrène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Anthracène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Fluoranthène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Pyrène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Benzo(a)anthracène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Chrysène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Benzo(b)fluoranthène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Benzo(k)fluoranthène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Benzo(a)pyrène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
HAP (6 Borneff) - somme	mg/kg Ms	n.d.		équivalent à NF EN 16181
Somme HAP (VROM)	mg/kg Ms	n.d.		équivalent à NF EN 16181
HAP (EPA) - somme	mg/kg Ms	n.d.		équivalent à NF EN 16181
Composés aremetiques		· · · · · · · · · · · · · · · · · · ·	·	

					Date N° Client	20.06.20 350049
RAPPORT D'ANALYSES						
n° Cde	116502	4 A2205-313_E	EPFLi C	ombleux so	ol	
N° échant.		Solide / Eluat	_	_		
Spécification des échantillons	S14 (1-					
opecification des echantifions	314(1-	-)	Limite	Incert.		
	Unité	Résultat	Quant.	Résultat %	Méthode	
Minéralisation à l'eau régale					NF-FN	16174; NF EN 13657
Willeralisation a read regale						(déchets)
Métaux						
Arsenic (As)	mg/kg Ms	19	1	+/- 15	Conforme	e à EN-ISO 11885, E 16174
Cadmium (Cd)	mg/kg Ms	<0,1	0,1		Conforme	e à EN-ISO 11885, E
` ′		•		./ 40	Conform	16174 e à EN-ISO 11885, E
Chrome (Cr)	mg/kg Ms	61	0,2	+/- 12		16174
Cuivre (Cu)	mg/kg Ms	15	0,2	+/- 20	Conforme	e à EN-ISO 11885, E 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conform	ne à ISO 16772 et E
				. / 44	Conform	16174 e à EN-ISO 11885, E
Nickel (Ni)	mg/kg Ms	23	0,5	+/- 11		16174
Plomb (Pb)	mg/kg Ms	17	0,5	+/- 11	Conforme	e à EN-ISO 11885, E 16174
Zinc (Zn)	mg/kg Ms	50	1	+/- 22	Conforme	e à EN-ISO 11885, E
. ,						16174
Hydrocarbures Aromatiques						
Naphtalène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Acénaphtylène	mg/kg Ms	<0,050	0,05		•	ent à NF EN 1618
Acénaphtène Fluorène	mg/kg Ms mg/kg Ms	<0,050 <0,050	0,05 0,05			ent à NF EN 1618 ent à NF EN 1618
Phénanthrène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Anthracène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Fluoranthène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Pyrène	mg/kg Ms	<0,050	0,05		équival	ent à NF EN 1618
Benzo(a)anthracène	mg/kg Ms	<0,050	0,05		équival	ent à NF EN 1618
Chrysène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Benzo(b)fluoranthène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Benzo(k)fluoranthène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Benzo(a)pyrène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Dibenzo(a,h)anthracène	mg/kg Ms mg/kg Ms	<0,050	0,05			ent à NF EN 1618 ent à NF EN 1618
Benzo(g,h,i)pérylène Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050 <0,050	0,05 0,05			ent à NF EN 1618
HAP (6 Borneff) - somme	mg/kg Ms	n.d.	0,03			ent à NF EN 1618
Somme HAP (VROM)	mg/kg Ms	n.d.				lent à NF EN 1618
HAP (EPA) - somme	mg/kg Ms	n.d.				ent à NF EN 1618
Composés aromatiques	<u> </u>					
Benzène	mg/kg Ms	<0,050	0,05			ISO 22155
Toluène	mg/kg Ms	<0,050	0,05			ISO 22155
Ethylbenzène	mg/kg Ms	<0,050	0,05			ISO 22155
m,p-Xylène	mg/kg Ms	<0,10	0,1			ISO 22155
o-Xylène	mg/kg Ms	<0,050	0,05			ISO 22155
Naphtalène	mg/kg Ms	<0,10	0,1			ISO 22155
Somme Xylènes	mg/kg Ms	n.d.				ISO 22155
BTEX total	*) mg/kg Ms	n.d.				ISO 22155
COHV				1	I	100.007==
Chlorure de Vinyle	mg/kg Ms	<0,02	0,02			ISO 22155
Dichlorométhane	mg/kg Ms	<0,05	0,05			ISO 22155

COHV

mèt	Chlorure de Vinyle	mg/kg Ms	<0,02	0,02	ISO 22155
araı	Dichlorométhane	mg/kg Ms	<0,05	0,05	ISO 22155

RvA L 005

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

. Opcomodich dec conditione	• · · · · · · · · · · · · · · · · · · ·				
	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Trichlorométhane	mg/kg Ms	<0,05	0,05		ISO 22155
Tétrachlorométhane	mg/kg Ms	<0,05	0,05		ISO 22155
Trichloroéthylène	mg/kg Ms	<0,05	0,05		ISO 22155
Tétrachloroéthylène	mg/kg Ms	<0,05	0,05		ISO 22155
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
1,1,2-Trichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
1,1-Dichloroéthane	mg/kg Ms	<0,10	0,1		ISO 22155
1,2-Dichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	0,025		ISO 22155
1,1-Dichloroéthylène	mg/kg Ms	<0,10	0,1		ISO 22155
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	0,025		ISO 22155
Somme cis/trans-1,2-Dichloroéthylènes	mg/kg Ms	n.d.			ISO 22155
Hydrocarbures totaux (ISO)					
Fraction aliphatique C5-C6	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Fraction C5-C10	mg/kg Ms	<1,0 ×)	1		conforme à NEN-EN-ISO 16558-1

ilyanosansanss totaan (100)				
Fraction aliphatique C5-C6	mg/kg Ms	<0,20	0,2	conforme à NEN-EN-ISO 16558-1
Fraction C5-C10	mg/kg Ms	<1,0 x)	1	conforme à NEN-EN-ISO 16558-1
Fraction >C6-C8	mg/kg Ms	<0,40 x)	0,4	conforme à NEN-EN-ISO 16558-1
Fraction C8-C10	mg/kg Ms	<0,40 x)	0,4	conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	0,2	conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	0,2	conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	0,2	conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	0,2	conforme à NEN-EN-ISO 16558-1
Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	20	ISO 16703
Fraction C10-C12	mg/kg Ms	<4,0	4	ISO 16703
Fraction C12-C16	mg/kg Ms	<4,0	4	ISO 16703
Fraction C16-C20	mg/kg Ms	<2,0	2	ISO 16703
Fraction C20-C24	mg/kg Ms	<2,0	2	ISO 16703
Fraction C24-C28	mg/kg Ms	<2,0	2	ISO 16703
Fraction C28-C32	mg/kg Ms	<2,0	2	ISO 16703
Fraction C32-C36	mg/kg Ms	<2,0	2	ISO 16703
Fraction C36-C40	mg/kg Ms	<2,0	2	ISO 16703

Polychlorobiphényles

1 diyoniolobipiichyles					
Somme 6 PCB	mg/kg Ms	0,0030 x)			NEN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	0,0030 ^{x)}			NEN-EN 16167
PCB (28)	mg/kg Ms	<0,001 0	0,001		NEN-EN 16167
PCB (52)	mg/kg Ms	<0,001 0	0,001		NEN-EN 16167
PCB (101)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
PCB (118)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
PCB (138)	mg/kg Ms	0,001	0,001	+/- 30	NEN-EN 16167
PCB (153)	mg/kg Ms	0,002 0	0,001	+/- 22	NEN-EN 16167
PCB (180)	mg/kg Ms	<0,001 0	0,001		NEN-EN 16167

					Date N° Client	20.06.202 3500495
RAPPORT D'ANALYSES					14 Olicit	3300433
n° Cde	116502	4 A2205-313_E	EPFLi_C	ombleux_s	ol	
N° échant.	365363	Solide / Eluat				
Spécification des échantillons	S14 (1-	2)				
•	`	,	Limite	Incert.		
	Unité	Résultat	Quant.	Résultat %	Méthode	
Trichlorométhane	mg/kg Ms	<0,05	0,05			ISO 22155
Tétrachlorométhane	mg/kg Ms	<0,05	0,05			ISO 22155
Trichloroéthylène	mg/kg Ms	<0,05	0,05			ISO 22155
Tétrachloroéthylène	mg/kg Ms	<0,05	0,05			ISO 22155
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	0,05			ISO 22155
1,1,2-Trichloroéthane 1,1-Dichloroéthane	mg/kg Ms mg/kg Ms	<0,05 <0,10	0,05 0,1			ISO 22155 ISO 22155
1,2-Dichloroéthane	mg/kg Ms	<0,10	0,05			ISO 22155
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	0,025			ISO 22155
1,1-Dichloroéthylène	mg/kg Ms	<0,10	0,1			ISO 22155
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	0,025			ISO 22155
Somme cis/trans-1,2-Dichloroéthylènes	mg/kg Ms	n.d.	,			ISO 22155
Hydrocarbures totaux (ISO)						
Fraction aliphatique C5-C6	mg/kg Ms	<0,20	0,2		conforme	à NEN-EN-ISO 16558-
Fraction C5-C10	mg/kg Ms	<1,0 x)	1		conforme	à NEN-EN-ISO 16558-
Fraction >C6-C8	mg/kg Ms	<0,40 ×)	0,4		conforme	à NEN-EN-ISO 16558-
Fraction C8-C10	mg/kg Ms	<0,40 ×)	0,4			à NEN-EN-ISO 16558-
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	0,2			à NEN-EN-ISO 16558-
raction aromatique >C6-C8	mg/kg Ms	<0,20	0,2			à NEN-EN-ISO 16558-
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	0,2			à NEN-EN-ISO 16558- à NEN-EN-ISO 16558-
Fraction aromatique >C8-C10	mg/kg Ms mg/kg Ms	<0,20	0,2			
Hydrocarbures totaux C10-C40 Fraction C10-C12	*) mg/kg Ms	<20,0 <4,0	20 4			ISO 16703 ISO 16703
	*) mg/kg Ms	<4,0 <4,0	4			ISO 16703
	*) mg/kg Ms	<2,0	2			ISO 16703
Fraction C20-C24	*) mg/kg Ms	<2,0	2			ISO 16703
	*) mg/kg Ms	<2,0	2			ISO 16703
	*) mg/kg Ms	<2,0	2			ISO 16703
	*) mg/kg Ms	<2,0	2			ISO 16703
Fraction C36-C40	*) mg/kg Ms	<2,0	2			ISO 16703
Polychlorobiphényles						
Somme 6 PCB	mg/kg Ms	0,0030 ×)				EN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	0,0030 ^{x)}				EN-EN 16167
PCB (28)	mg/kg Ms	<0,001	0,001			EN-EN 16167
PCB (52)	mg/kg Ms	<0,001	0,001			EN-EN 16167
PCB (101)	mg/kg Ms mg/kg Ms	<0,001	0,001			EN-EN 16167
PCB (118) PCB (138)	mg/kg Ms	<0,001 0,001	0,001 0,001	+/- 30		EN-EN 16167 EN-EN 16167
PCB (153)	mg/kg Ms	0,001	0,001	+/- 22		EN-EN 16167 EN-EN 16167
PCB (180)	mg/kg Ms	<0,001	0,001	17 22		EN-EN 16167
Analyses sur éluat après lixiv		10,001	5,55.			
L/S cumulé	ml/g	10,0	0,1		Selo	n norme lixiviation
Conductivité électrique	μS/cm	130	5	+/- 10		n norme lixiviation
pH	μοιοιι	8,5	0	+/- 5		n norme lixiviation
Température	°C	20,5	0	., 0		n norme lixiviation
Analyses Physico-chimiques		-,-			· · · · · · · · · · · · · · · · · · ·	
Résidu à sec	mg/l	<100	100		Equivale	ent à NF EN ISO 15216
	ıə,·	1.50	.00			

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 20.06.2022 N° Client 35004955

RAPPORT D'ANALYSES

n° Cde 1165024 A2205-313_EPFLi_Combleux_sol

N° échant. 365363 Solide / Eluat

Spécification des échantillons S14 (1-2)

		Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
	Fluorures (F)	mg/l	0,7	0,1	+/- 10	Conforme à ISO 10359-1, conforme à EN 16192
5	Indice phénol	mg/l	<0,010	0,01		NEN-EN 16192
	Chlorures (CI)	mg/l	1,2	0,1	+/- 10	Conforme à ISO 15923-1
5	Sulfates (SO4)	mg/l	13	5	+/- 10	Conforme à ISO 15923-1
5	COT	mg/l	2,8	1	+/- 10	conforme EN 16192
3	Métaux sur éluat					
5	Antimoine (Sb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Š	Arsenic (As)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2

Métaux sur éluat					
Antimoine (Sb)	µg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Arsenic (As)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Baryum (Ba)	μg/l	18	10	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Cadmium (Cd)	μg/l	<0,1	0,1		Conforme à EN-ISO 17294-2 (2004)
Chrome (Cr)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)
Cuivre (Cu)	μg/l	4,5	2	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Mercure	μg/l	° <0,03	0,03		méthode interne (conforme NEN- EN-ISO 12846)
Molybdène (Mo)	μg/l	6,1	5	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Nickel (Ni)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Plomb (Pb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Sélénium (Se)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Zinc (Zn)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé.
Le calcul de l' incertitude de mesure analytique combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l' expression de l' incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordtest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d' élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance).

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Début des analyses: 10.06.2022 Fin des analyses: 17.06.2022

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

la norme

EN ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du symbole " *) ".

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 20.06.2022 N° Client 35004955

RAPPORT D'ANALYSES

n° Cde 1165024 A2205-313_EPFLi_Combleux_sol N° échant. **365363** Solide / Eluat

Spécification des échantillons

S14 (1-2)

AL-West B.V. Mme Fatima-Zahra Saati, Tel. 33/380680132 Chargée relation clientèle

et/ou externalisés sont marqués du symbole " *) ".

Seuls les paramètres non

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110 e-Mail: info@al-west.nl, www.al-west.nl

Your labs. Your service.

ENVISOL 2-4, rue Hector Berlioz 38110 LA TOUR DU PIN **FRANCE**

> 20.06.2022 Date N° Client 35004955

> > Máthada

RAPPORT D'ANALYSES

n° Cde 1165024 A2205-313_EPFLi_Combleux_sol

Lloitá

N° échant. 365364 Solide / Eluat

Date de validation 10.06.2022 Prélèvement 07.06.2022 Prélèvement par: Client Spécification des échantillons S9 (1-2)

		Office		Resultat	Quant.	Resultat %	Methode
Lixivi	ation						
Fraction	on >4mm (EN12457-2)	%	•	7,8	0,1		Selon norme lixiviation
Masse	brute Mh pour lixiviation *)	g	•	110	1		Selon norme lixiviation
Lixivia	tion (EN 12457-2)		0				NF EN 12457-2
Volume	de lixiviant L ajouté pour l'extraction *)	ml		900	1		Selon norme lixiviation

Limite

Incert.

Prétraitement des échantillons

Masse échantillon total inférieure à 2 kg	kg	۰	0,70	0		
Prétraitement de l'échantillon		•				Conforme à NEN-EN 16179
Broyeur à mâchoires		۰				méthode interne
Matière sèche	%	۰	85,4	0,01	+/- 1	NEN-EN 15934 ; EN12880

Calcul des Fractions solubles

Fraction soluble cumulé (var. L/S)	mg/kg Ms	0 - 1000	1000	Selon norme lixiviation
Antimoine cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
Arsenic cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
Baryum cumulé (var. L/S)	mg/kg Ms	0,10	0,1	Selon norme lixiviation
Cadmium cumulé (var. L/S)	mg/kg Ms	0 - 0,001	0,001	Selon norme lixiviation
Chlorures cumulé (var. L/S)	mg/kg Ms	7,0	1	Selon norme lixiviation
Chrome cumulé (var. L/S)	mg/kg Ms	0 - 0,02	0,02	Selon norme lixiviation
COT cumulé (var. L/S)	mg/kg Ms	14	10	Selon norme lixiviation
Cuivre cumulé (var. L/S)	mg/kg Ms	0 - 0,02	0,02	Selon norme lixiviation
Fluorures cumulé (var. L/S)	mg/kg Ms	5,0	1	Selon norme lixiviation
Indice phénol cumulé (var. L/S)	mg/kg Ms	0 - 0,1	0,1	Selon norme lixiviation
Mercure cumulé (var. L/S)	mg/kg Ms	0 - 0,0003	0,0003	Selon norme lixiviation
Molybdène cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
Nickel cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
Plomb cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
Sélénium cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
Sulfates cumulé (var. L/S)	mg/kg Ms	0 - 50	50	Selon norme lixiviation
Zinc cumulé (var. L/S)	mg/kg Ms	0 - 0,02	0,02	Selon norme lixiviation

Analyses Physico-chimiques

	11111	300			Colon nonne ilxiviation
Prétraitement des échantillo	ns				
Masse échantillon total inférieure à 2 kg	kg	° 0,70	0		
Prétraitement de l'échantillon		0			Conforme à NEN-EN 161
Broyeur à mâchoires		0			méthode interne
Matière sèche	%	° 85,4	0,01	+/- 1	NEN-EN 15934 ; EN128
Calcul des Fractions soluble	es				
Fraction soluble cumulé (var. L/S)	*) mg/kg Ms	0 - 1000	1000		Selon norme lixiviation
Antimoine cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Arsenic cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Baryum cumulé (var. L/S)	*) mg/kg Ms	0,10	0,1		Selon norme lixiviation
Cadmium cumulé (var. L/S)	*) mg/kg Ms	0 - 0,001	0,001		Selon norme lixiviation
Chlorures cumulé (var. L/S)	*) mg/kg Ms	7,0	1		Selon norme lixiviation
Chrome cumulé (var. L/S)	*) mg/kg Ms	0 - 0,02	0,02		Selon norme lixiviation
COT cumulé (var. L/S)	*) mg/kg Ms	14	10		Selon norme lixiviation
Cuivre cumulé (var. L/S)	*) mg/kg Ms	0 - 0,02	0,02		Selon norme lixiviation
Fluorures cumulé (var. L/S)	*) mg/kg Ms	5,0	1		Selon norme lixiviation
Indice phénol cumulé (var. L/S)	*) mg/kg Ms	0 - 0,1	0,1		Selon norme lixiviation
Mercure cumulé (var. L/S)	*) mg/kg Ms	0 - 0,0003	0,0003		Selon norme lixiviation
Molybdène cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Nickel cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Plomb cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Sélénium cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Sulfates cumulé (var. L/S)	*) mg/kg Ms	0 - 50	50		Selon norme lixiviation
Zinc cumulé (var. L/S)	*) mg/kg Ms	0 - 0,02	0,02		Selon norme lixiviation
Analyses Physico-chimiques	S				
pH-H2O		° 8,6	0,1	+/- 10	Cf. NEN-ISO 10390 (sol uniquement)
COT Carbone Organique Total	mg/kg Ms	6200	1000	+/- 16	conforme ISO 10694 (20
Prétraitement pour analyses	1 0 0			7	,
					page 1 c

AL-West B.V.
Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Minéralisation à l'eau régale		0			NF-EN 16174; NF EN 13657 (déchets)
Métaux					
Arsenic (As)	mg/kg Ms	11	1	+/- 15	Conforme à EN-ISO 11885, EN 16174
Cadmium (Cd)	mg/kg Ms	<0,1	0,1		Conforme à EN-ISO 11885, EN 16174
Chrome (Cr)	mg/kg Ms	21	0,2	+/- 12	Conforme à EN-ISO 11885, EN 16174
Cuivre (Cu)	mg/kg Ms	7,5	0,2	+/- 20	Conforme à EN-ISO 11885, EN 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conforme à ISO 16772 et EN 16174
Nickel (Ni)	mg/kg Ms	16	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Plomb (Pb)	mg/kg Ms	13	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Zinc (Zn)	mg/kg Ms	36	1	+/- 22	Conforme à EN-ISO 11885, EN 16174

	A 4*	-	(100)
Hydrocarbures	Aromatiques	Polycycliques	(ISO)

riyarocarbarca Aromanques	o i Orycychique.	3 (100 <i>)</i>			
Naphtalène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Acénaphtylène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Acénaphtène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Fluorène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Phénanthrène	mg/kg Ms	0,23	0,05	+/- 20	équivalent à NF EN 16181
Anthracène	mg/kg Ms	0,064	0,05	+/- 24	équivalent à NF EN 16181
Fluoranthène	mg/kg Ms	0,34	0,05	+/- 17	équivalent à NF EN 16181
Pyrène	mg/kg Ms	0,26	0,05	+/- 19	équivalent à NF EN 16181
Benzo(a)anthracène	mg/kg Ms	0,16	0,05	+/- 14	équivalent à NF EN 16181
Chrysène	mg/kg Ms	0,16	0,05	+/- 14	équivalent à NF EN 16181
Benzo(b)fluoranthène	mg/kg Ms	0,14	0,05	+/- 12	équivalent à NF EN 16181
Benzo(k)fluoranthène	mg/kg Ms	0,066	0,05	+/- 14	équivalent à NF EN 16181
Benzo(a)pyrène	mg/kg Ms	0,12	0,05	+/- 14	équivalent à NF EN 16181
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Indéno(1,2,3-cd)pyrène	mg/kg Ms	0,088	0,05	+/- 17	équivalent à NF EN 16181
HAP (6 Borneff) - somme	mg/kg Ms	0,754 ×)			équivalent à NF EN 16181
Somme HAP (VROM)	mg/kg Ms	1,23 ^{x)}			équivalent à NF EN 16181
HAP (EPA) - somme	mg/kg Ms	1,63 ^{x)}	•		équivalent à NF EN 16181
Composés aramatiques	· · · · · · · · · · · · · · · · · · ·		·	·	

					Date	20.06.20
					N° Client	350049
RAPPORT D'ANALYSES						
n° Cde		4 A2205-313_E	EPFLi_C	combleux_sc	ol	
N° échant.	365364	Solide / Eluat				
Spécification des échantillons	S9 (1-2))				
·			Limite	Incert.		
	Unité	Résultat	Quant.	Résultat %	Méthode	
Minéralisation à l'eau régale	0				NF-EN	16174; NF EN 13657
Métaux						(déchets)
Arsenic (As)	mg/kg Ms	11	1	+/- 15	Conforme	e à EN-ISO 11885, E
				- 7-13		16174
Cadmium (Cd)	mg/kg Ms	<0,1	0,1		Conforme	è à EN-ISO 11885, E 16174
Chrome (Cr)	mg/kg Ms	21	0,2	+/- 12	Conforme	è à EN-ISO 11885, E
• •	ma/ka Ma	7.5		+/- 20	Conforme	16174 à EN-ISO 11885, E
Cuivre (Cu)	mg/kg Ms	7,5	0,2	+/- 20		16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conform	ne à ISO 16772 et El 16174
Nickel (Ni)	mg/kg Ms	16	0,5	+/- 11	Conforme	à EN-ISO 11885, E
Plomb (Pb)	mg/kg Ms	13		+/- 11	Conforme	16174 e à EN-ISO 11885, E
` ,	rrig/kg ivis	13	0,5			16174
Zinc (Zn)	mg/kg Ms	36	1	+/- 22	Conforme	è à EN-ISO 11885, E 16174
Hydrocarbures Aromatiques	Polycycliques (I	SOI			l	10111
Naphtalène	mg/kg Ms	<0,050	0,05		équival	ent à NF EN 1618
Acénaphtylène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Acénaphtène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Fluorène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Phénanthrène	mg/kg Ms	0,23	0,05	+/- 20		ent à NF EN 1618
Anthracène	mg/kg Ms	0,064	0,05	+/- 24		ent à NF EN 1618
Fluoranthène	mg/kg Ms	0,34	0,05	+/- 17		ent à NF EN 1618
Pyrène	mg/kg Ms	0,26	0,05	+/- 19	•	ent à NF EN 1618
Benzo(a)anthracène Chrysène	mg/kg Ms mg/kg Ms	0,16 0,16	0,05 0,05	+/- 14		ent à NF EN 1618 ent à NF EN 1618
Benzo(b)fluoranthène	mg/kg Ms	0,10	0,05	+/- 14		ent à NF EN 1618
Benzo(k)fluoranthène	mg/kg Ms	0,066	0,05	+/- 14	· ·	ent à NF EN 1618
Benzo(a)pyrène	mg/kg Ms	0,12	0,05	+/- 14		ent à NF EN 1618
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	0,05		équival	ent à NF EN 1618
Indéno(1,2,3-cd)pyrène	mg/kg Ms	0,088	0,05	+/- 17		ent à NF EN 1618
HAP (6 Borneff) - somme	mg/kg Ms	0,754 ×)				ent à NF EN 1618
Somme HAP (VROM)	mg/kg Ms	1,23 ×)				ent à NF EN 1618
HAP (EPA) - somme	mg/kg Ms	1,63 ^{x)}			equival	ent à NF EN 1618
Composés aromatiques						
Benzène	mg/kg Ms	<0,050	0,05			ISO 22155
Toluène Ethylbonzòno	mg/kg Ms	<0,050	0,05			ISO 22155
Ethylbenzène m,p-Xylène	mg/kg Ms mg/kg Ms	<0,050 <0,10	0,05 0,1			ISO 22155 ISO 22155
o-Xylène	mg/kg Ms	<0,10	0,05			ISO 22155 ISO 22155
Naphtalène	mg/kg Ms	<0,030	0,03			ISO 22155
Somme Xylènes	mg/kg Ms	n.d.	٥, ١			ISO 22155
BTEX total	*) mg/kg Ms	n.d.				ISO 22155
COHV					·	
Chlorure de Vinyle	mg/kg Ms	<0,02	0,02			ISO 22155
Dichlorométhane	mg/kg Ms	<0,05	0,05			ISO 22155

COHV

mèt	Chlorure de Vinyle	mg/kg Ms	<0,02	0,02	ISO 22155
araı	Dichlorométhane	mg/kg Ms	<0,05	0,05	ISO 22155

RvA L 005

Kamer van Koophandel Nr. 08110898 ppa. Marc VAT/BTW-ID-Nr.: NL 811132559 B01 Directeur ppa. Marc Dr. Paul V ppa. Marc van Gelder Dr. Paul Wimmer

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Specification des echantillons	S9 (1-2)				
	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
0	Office	resultat	Quart.	1 Countar 70	Wictiodo
Trichlorométhane	mg/kg Ms	<0,05	0,05		ISO 22155
▼ Tétrachlorométhane	mg/kg Ms	<0,05	0,05		ISO 22155
Trichloroéthylène	mg/kg Ms	<0,05	0,05		ISO 22155
Tétrachloroéthylène	mg/kg Ms	<0,05	0,05		ISO 22155
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
1,1,2-Trichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
1,1-Dichloroéthane	mg/kg Ms	<0,10	0,1		ISO 22155
1,2-Dichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
ଟ୍ଟି cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	0,025		ISO 22155
1,1-Dichloroéthylène	mg/kg Ms	<0,10	0,1		ISO 22155
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	0,025		ISO 22155
Somme cis/trans-1,2-Dichloroéthylènes	mg/kg Ms	n.d.			ISO 22155
Hydrocarbures totaux (ISO)					
Fraction aliphatique C5-C6	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Fraction C5-C10	mg/kg Ms	<1,0 ×)	1		conforme à NEN-EN-ISO 16558-1
Fraction >C6-C8	mg/kg Ms	<0,40 ×)	0,4		conforme à NEN-EN-ISO 16558-1
Fraction C8-C10	ma/ka Ms	-0 10 ×)	0.4		conforme à NEN-EN-ISO 16558-1

-	Hydrocarbures totaux (ISO)					
3	Fraction aliphatique C5-C6	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
3	Fraction C5-C10	mg/kg Ms	<1,0 x)	1		conforme à NEN-EN-ISO 16558-1
2	Fraction >C6-C8	mg/kg Ms	<0,40 x)	0,4		conforme à NEN-EN-ISO 16558-1
2	Fraction C8-C10	mg/kg Ms	<0,40 x)	0,4		conforme à NEN-EN-ISO 16558-1
	Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
5	Fraction aromatique >C6-C8	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
	Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
7	Fraction aromatique >C8-C10	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
-	Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	20		ISO 16703
í	Fraction C10-C12	mg/kg Ms	<4,0	4		ISO 16703
Ò	Fraction C12-C16	mg/kg Ms	<4,0	4		ISO 16703
•	Fraction C16-C20	mg/kg Ms	2,5	2	+/- 21	ISO 16703
ī	Fraction C20-C24	mg/kg Ms	<2,0	2		ISO 16703
2	Fraction C24-C28	mg/kg Ms	<2,0	2		ISO 16703
5	Fraction C28-C32	mg/kg Ms	<2,0	2		ISO 16703
	**					100 1000

Dolve	hloro	hinh	ánylac

Polychioropiphenyles				
Somme 6 PCB	mg/kg Ms	n.d.		NEN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.		NEN-EN 16167
PCB (28)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB (52)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB (101)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB (118)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB (138)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB (153)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB (180)	mg/kg Ms	<0,001	0,001	NEN-EN 16167

					Date N° Client	20.06.202 3500495
RAPPORT D'ANALYSES					14 Olicit	3300433
n° Cde	1165024 A	2205-313_E	EPFLi_C	ombleux_s	ol	
N° échant.	365364 So	lide / Eluat				
Spécification des échantillons	S9 (1-2)					
			Limite	Incert.		
	Unité	Résultat	Quant.	Résultat %	Méthode	
Trichlorométhane	mg/kg Ms	<0,05	0,05			ISO 22155
Tétrachlorométhane	mg/kg Ms	<0,05	0,05			ISO 22155
Trichloroéthylène	mg/kg Ms	<0,05	0,05			ISO 22155
Tétrachloroéthylène	mg/kg Ms	<0,05	0,05			ISO 22155
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	0,05			ISO 22155
1,1,2-Trichloroéthane	mg/kg Ms	<0,05	0,05			ISO 22155
1,1-Dichloroéthane	mg/kg Ms	<0,10	0,1			ISO 22155
1,2-Dichloroéthane	mg/kg Ms	<0,05	0,05			ISO 22155
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	0,025			ISO 22155
1,1-Dichloroéthylène	mg/kg Ms	<0,10	0,1			ISO 22155
Trans-1,2-Dichloroéthylène Somme cis/trans-1,2-Dichloroéthylènes	mg/kg Ms mg/kg Ms	<0,025 n.d.	0,025			ISO 22155 ISO 22155
-	ilig/kg ivis	n.u.				130 22 133
Hydrocarbures totaux (ISO)						2 NEN EN 100 40550
Fraction aliphatique C5-C6	mg/kg Ms	<0,20	0,2			à NEN-EN-ISO 16558- à NEN-EN-ISO 16558-
Fraction C5-C10	mg/kg Ms	<1,0 x)	1 0.4			à NEN-EN-ISO 16558-
Fraction >C6-C8 Fraction C8-C10	mg/kg Ms	<0,40 ^{x)}	0,4			à NEN-EN-ISO 16558-
Fraction Co-C10 Fraction aliphatique >C6-C8	mg/kg Ms mg/kg Ms	<0,40	0,4			à NEN-EN-ISO 16558-
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	0,2			à NEN-EN-ISO 16558-
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	0,2			à NEN-EN-ISO 16558-
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	0,2			à NEN-EN-ISO 16558-
Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	20			ISO 16703
	mg/kg Ms	<4,0	4			ISO 16703
	mg/kg Ms	<4,0	4			ISO 16703
	mg/kg Ms	2,5	2	+/- 21		ISO 16703
i laction OZO OZ-	mg/kg Ms	<2,0	2			ISO 16703
	mg/kg Ms	<2,0	2			ISO 16703
	mg/kg Ms	<2,0	2			ISO 16703
	mg/kg Ms	<2,0	2			ISO 16703
Fraction C36-C40	mg/kg Ms	<2,0	2			ISO 16703
Polychlorobiphényles						
Somme 6 PCB	mg/kg Ms	n.d.			N	EN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.			N	EN-EN 16167
PCB (28)	mg/kg Ms	<0,001	0,001			EN-EN 16167
PCB (52)	mg/kg Ms	<0,001	0,001			EN-EN 16167
PCB (101)	mg/kg Ms	<0,001	0,001			EN-EN 16167
PCB (118)	mg/kg Ms	<0,001	0,001			EN-EN 16167
PCB (138)	mg/kg Ms	<0,001	0,001			EN-EN 16167
PCB (153)	mg/kg Ms	<0,001	0,001			EN-EN 16167
PCB (180)	mg/kg Ms	<0,001	0,001		Ni	EN-EN 16167
Analyses sur éluat après lixiv						
L/S cumulé	ml/g	10,0	0,1			n norme lixiviation
Conductivité électrique	μS/cm	69,4	5	+/- 10		n norme lixiviation
pH	00	8,6	0	+/- 5		n norme lixiviation
Température	°C	20,0	0		Seloi	n norme lixiviation
Analyses Physico-chimiques : Résidu à sec	sur éluat mg/l	<100	100		1	ent à NF EN ISO 15216

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 20.06.2022 N° Client 35004955

RAPPORT D'ANALYSES

n° Cde 1165024 A2205-313_EPFLi_Combleux_sol

N° échant. 365364 Solide / Eluat

Spécification des échantillons S9 (1-2)

	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Fluorures (F)	mg/l	0,5	0,1	+/- 10	Conforme à ISO 10359-1, conforme à EN 16192
Indice phénol	mg/l	<0,010	0,01		NEN-EN 16192
Chlorures (CI)	mg/l	0,7	0,1	+/- 10	Conforme à ISO 15923-1
Sulfates (SO4)	mg/l	<5,0	5		Conforme à ISO 15923-1
COT	mg/l	1,4	1	+/- 10	conforme EN 16192
Métaux sur éluat					
Antimoine (Sb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)

Métaux sur éluat					
Antimoine (Sb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Arsenic (As)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Baryum (Ba)	μg/l	10	10	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Cadmium (Cd)	μg/l	<0,1	0,1		Conforme à EN-ISO 17294-2 (2004)
Chrome (Cr)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)
Cuivre (Cu)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)
Mercure	μg/l	° <0,03	0,03		méthode interne (conforme NEN- EN-ISO 12846)
Molybdène (Mo)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Nickel (Ni)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Plomb (Pb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Sélénium (Se)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Zinc (Zn)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé. Le calcul de l' incertitude de mesure analytique combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l' expression de l' incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordtest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d' élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance).

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Début des analyses: 10.06.2022 Fin des analyses: 17.06.2022

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

la norme sont es paramètres réalisés par AL-West

EN ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du symbole " *) ".

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 20.06.2022 N° Client 35004955

RAPPORT D'ANALYSES

n° Cde 1165024 A2205-313_EPFLi_Combleux_sol N° échant. **365364** Solide / Eluat

Spécification des échantillons S9 (1-2)

AL-West B.V. Mme Fatima-Zahra Saati, Tel. 33/380680132 Chargée relation clientèle

et/ou externalisés sont marqués du symbole " *) ".

Seuls les paramètres non

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

ENVISOL 2-4, rue Hector Berlioz 38110 LA TOUR DU PIN **FRANCE**

> 20.06.2022 Date N° Client 35004955

RAPPORT D'ANALYSES

n° Cde 1165024 A2205-313_EPFLi_Combleux_sol

N° échant. 365365 Solide / Eluat

Date de validation 10.06.2022 Prélèvement 07.06.2022 Prélèvement par: Client Spécification des échantillons S9 (3.5-4.5)

			Unité		Résultat	Quant.	Résultat %	Méthode
	Lixiviation							
Ĺ	Fraction >4mm (EN12457-2)		%	•	10,6	0,1		Selon norme lixiviation
	Masse brute Mh pour lixiviation	*)	g	•	110	1		Selon norme lixiviation
	Lixiviation (EN 12457-2)			•				NF EN 12457-2
	Volume de lixiviant L ajouté pour l'extraction	*) T	ml	-	900	1		Selon norme lixiviation

Limite

Incert.

Prétraitement des échantillons

Masse échantillon total inférieure à 2 kg	kg	۰	0,62	0		
Prétraitement de l'échantillon		۰				Conforme à NEN-EN 16179
Broyeur à mâchoires		۰				méthode interne
Matière sèche	%	۰	85,8	0,01	+/- 1	NEN-EN 15934 ; EN12880

Calcul des Fractions solubles

Fraction soluble cumulé (var. L/S)	mg/kg Ms	0 - 1000	1000	Selon norme lixiviation
Antimoine cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
Arsenic cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
Baryum cumulé (var. L/S)	mg/kg Ms	0,11	0,1	Selon norme lixiviation
Cadmium cumulé (var. L/S)	mg/kg Ms	0 - 0,001	0,001	Selon norme lixiviation
Chlorures cumulé (var. L/S)	mg/kg Ms	8,0	1	Selon norme lixiviation
Chrome cumulé (var. L/S)	mg/kg Ms	0 - 0,02	0,02	Selon norme lixiviation
COT cumulé (var. L/S)	mg/kg Ms	0 - 10	10	Selon norme lixiviation
Cuivre cumulé (var. L/S)	mg/kg Ms	0 - 0,02	0,02	Selon norme lixiviation
Fluorures cumulé (var. L/S)	mg/kg Ms	3,0	1	Selon norme lixiviation
Indice phénol cumulé (var. L/S)	mg/kg Ms	0 - 0,1	0,1	Selon norme lixiviation
Mercure cumulé (var. L/S)	mg/kg Ms	0 - 0,0003	0,0003	Selon norme lixiviation
Molybdène cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
Nickel cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
Plomb cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
Sélénium cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
Sulfates cumulé (var. L/S)	mg/kg Ms	68	50	Selon norme lixiviation
Zinc cumulé (var. L/S)	mg/kg Ms	0 - 0,02	0,02	Selon norme lixiviation

Analyses Physico-chimiques

Prétraitement des échantillons	
Masse échantillon total inférieure à 2 kg kg ° 0,62 0	
	à NEN-EN 161
Broyeur à mâchoires ° mét	hode interne
	15934 ; EN128
Calcul des Fractions solubles	
Fraction soluble cumulé (var. L/S) ") mg/kg Ms 0 - 1000 1000 Selon	norme lixiviation
Antimoine cumulé (var. L/S) ") mg/kg Ms 0 - 0,05 0,05 Selon	norme lixiviation
	norme lixiviation
Baryum cumulé (var. L/S) ¹⁾ mg/kg Ms 0,11 0,1 Selon	norme lixiviation
Cadmium cumulé (var. L/S) " mg/kg Ms 0 - 0,001 0,001 Selon	norme lixiviation
Chlorures cumulé (var. L/S) ") mg/kg Ms 8,0 1 Selon	norme lixiviation
Chrome cumulé (var. L/S) ") mg/kg Ms 0 - 0,02 0,02 Selon	norme lixiviation
COT cumulé (var. L/S) ") mg/kg Ms 0 - 10 10 Selon	norme lixiviation
Cuivre cumulé (var. L/S) ¹⁾ mg/kg Ms 0 - 0,02 0,02 Selon	norme lixiviation
Fluorures cumulé (var. L/S) ¹⁾ mg/kg Ms 3,0 1 Selon	norme lixiviation
Indice phénol cumulé (var. L/S) *) mg/kg Ms 0 - 0,1 0,1 Selon	norme lixiviation
Mercure cumulé (var. L/S) *) mg/kg Ms	norme lixiviation
Molybdène cumulé (var. L/S) *) mg/kg Ms 0 - 0,05 0,05 Selon	norme lixiviation
Nickel cumulé (var. L/S) *) mg/kg Ms	norme lixiviation
Plomb cumulé (var. L/S) *) mg/kg Ms	norme lixiviation
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	norme lixiviation
Sulfates cumulé (var. L/S) *) mg/kg Ms 68 50 Selon	norme lixiviation
Zinc cumulé (var. L/S) *) mg/kg Ms	norme lixiviation
Analyses Physico-chimiques	
	N-ISO 10390 (sol
	ISO 10694 (20
Sulfates cumulé (var. L/S) Tinc cumulé (var. L/S) mg/kg Ms 0 - 0,02 0,02 Selon	,
	page 1 d

AL-West B.V.
Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Spécification des échantillons	S9 (3.5-4.5)				
	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Minéralisation à l'eau régale	0				NF-EN 16174; NF EN 13657 (déchets)
Métaux					
Arsenic (As)	mg/kg Ms	6,3	1	+/- 15	Conforme à EN-ISO 11885, EN 16174
Cadmium (Cd)	mg/kg Ms	<0,1	0,1		Conforme à EN-ISO 11885, EN 16174
Chrome (Cr)	mg/kg Ms	11	0,2	+/- 12	Conforme à EN-ISO 11885, EN 16174
Cuivre (Cu)	mg/kg Ms	6,1	0,2	+/- 20	Conforme à EN-ISO 11885, EN 16174
Mercure (Hg)	mg/kg Ms	0,05	0,05	+/- 20	Conforme à ISO 16772 et EN 16174
Nickel (Ni)	mg/kg Ms	9,1	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Plomb (Pb)	mg/kg Ms	8,7	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Zinc (Zn)	mg/kg Ms	22	1	+/- 22	Conforme à EN-ISO 11885, EN 16174
Hydrocarbures Aromatiques I	Polycycliques (ISO)				
Naphtalène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Acénaphtylène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Acénaphtène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181

Ну	drocarl	oures A	Aromati	iques	Pol	ycy	ycliq	ues	(ISO)	1

Naphtalène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Acénaphtylène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Acénaphtène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Fluorène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Phénanthrène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Anthracène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Fluoranthène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Pyrène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Benzo(a)anthracène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Chrysène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Benzo(b)fluoranthène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Benzo(k)fluoranthène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Benzo(a)pyrène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
HAP (6 Borneff) - somme	mg/kg Ms	n.d.		équivalent à NF EN 16181
Somme HAP (VROM)	mg/kg Ms	n.d.		équivalent à NF EN 16181
HAP (EPA) - somme	mg/kg Ms	n.d.		équivalent à NF EN 16181
5				

					Date	20.06.20
DADDODT DIAMAI VEEC					N° Client	350049
RAPPORT D'ANALYSES	446500	M ADDOE 242 I	-DEI: C	omblouv o		
n° Cde		4 A2205-313_I	=PFLI_C	ombieux_s	OI	
N° échant.		Solide / Eluat				
Spécification des échantillons	S9 (3.5	-4.5)				
		54 1	Limite	Incert.	****	
	Unité	Résultat	Quant.	Résultat %	Méthode	
Minéralisation à l'eau régale	•				NF-EN	16174; NF EN 13657 (déchets)
Métaux				<u>'</u>		(account)
Arsenic (As)	mg/kg Ms	6,3	1	+/- 15	Conforme	e à EN-ISO 11885, E
Cadmium (Cd)	mg/kg Ms	<0,1	0,1		Conforme	16174 e à EN-ISO 11885, E
, ,						16174
Chrome (Cr)	mg/kg Ms	11	0,2	+/- 12	Conform	e à EN-ISO 11885, E 16174
Cuivre (Cu)	mg/kg Ms	6,1	0,2	+/- 20	Conform	e à EN-ISO 11885, E 16174
Mercure (Hg)	mg/kg Ms	0,05	0,05	+/- 20	Conform	ne à ISO 16772 et El
Nickel (Ni)	mg/kg Ms	9,1	0,5	+/- 11	Conform	16174 e à EN-ISO 11885, E
, ,						16174
Plomb (Pb)	mg/kg Ms	8,7	0,5	+/- 11		e à EN-ISO 11885, E 16174
Zinc (Zn)	mg/kg Ms	22	1	+/- 22	Conforme	e à EN-ISO 11885, E 16174
Hydrocarbures Aromatiques	Polycycliques (ISO)			l	10171
Naphtalène	mg/kg Ms	<0,050	0,05		éguiva	lent à NF EN 1618
Acénaphtylène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Acénaphtène	mg/kg Ms	<0,050	0,05		équival	ent à NF EN 1618
Fluorène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Phénanthrène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Anthracène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Fluoranthène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Pyrène	mg/kg Ms	<0,050	0,05		· · ·	ent à NF EN 1618
Benzo(a)anthracène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Chrysène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Benzo(b)fluoranthène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Benzo(k)fluoranthène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Benzo(a)pyrène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
HAP (6 Borneff) - somme	mg/kg Ms	n.d.	0,03			ent à NF EN 1618
	mg/kg Ms					ent à NF EN 1618
Somme HAP (VROM) HAP (EPA) - somme	mg/kg Ms	n.d.				ent à NF EN 1618
	Trig/kg ivis	n.d.			equiva	entani Livitoto
Composés aromatiques	ma/ka Ma	.0.050	0.05			100 22455
Benzène	mg/kg Ms	<0,050	0,05			ISO 22155
Toluène	mg/kg Ms	<0,050	0,05			ISO 22155
Ethylbenzène	mg/kg Ms	<0,050	0,05			ISO 22155
m,p-Xylène	mg/kg Ms	<0,10	0,1			ISO 22155
o-Xylène	mg/kg Ms	<0,050	0,05	1		ISO 22155
Naphtalène	mg/kg Ms	<0,10	0,1			ISO 22155
Somme Xylènes	mg/kg Ms	n.d.				ISO 22155
BTEX total	*) mg/kg Ms	n.d.				ISO 22155
COHV						
Chlorure de Vinyle	mg/kg Ms	<0,02	0,02			ISO 22155
Dichlorométhane	mg/kg Ms	<0,05	0,05			ISO 22155

COHV

nèt	Chlorure de Vinyle	mg/kg Ms	<0,02	0,02	ISO 22155
arar	Dichlorométhane	mg/kg Ms	<0,05	0,05	ISO 22155

RvA L 005

AL-West B.V.
Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 20.06.2022 N° Client 35004955

RAPPORT D'ANALYSES

symbole " *) ".

og q	n° Cde	116	6 5024 A2205-313_E	EPFLi_C	ombleux_sol	
ués	N° échant.	365	5365 Solide / Eluat			
arq	Spécification des échantillons		(3.5-4.5)			
Ŧ	Specification des echantillons	33	(3.3-4.3)	Limite	Incert.	
et/ou externalisés sont marqués		Unité	Résultat	Quant.	Résultat %	Méthode
isé	Trichlorométhane	mg/kg Ms	<0,05	0,05		ISO 22155
nal	Tétrachlorométhane	mg/kg Ms	<0,05	0,05		ISO 22155
ter	Trichloroéthylène	mg/kg Ms	<0,05	0,05		ISO 22155
ê	Tétrachloroéthylène	mg/kg Ms	<0,05	0,05		ISO 22155
ζ	1,1,1-Trichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
s e	1,1,2-Trichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
dité	1,1-Dichloroéthane	mg/kg Ms	<0,10	0,1		ISO 22155
řé	1,2-Dichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
acc	cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	0,025		ISO 22155
o	1,1-Dichloroéthylène	mg/kg Ms	<0,10	0,1		ISO 22155
S	Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	0,025		ISO 22155
tre	Somme cis/trans-1,2-Dichloroéthylènes	mg/kg Ms	n.d.			ISO 22155
ımè	Hydrocarbures totaux (ISO)					
paramètres non accrédités	Fraction aliphatique C5-C6	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
SS	Fraction C5-C10	mg/kg Ms	<1,0 x)	1		conforme à NEN-EN-ISO 16558-1
s	Fraction >C6-C8	mg/kg Ms	<0,40 ×)	0,4		conforme à NEN-EN-ISO 16558-1
Seuls les	Fraction C8-C10	mg/kg Ms	<0,40 x)	0,4		conforme à NEN-EN-ISO 16558-1
	Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
31	Fraction aromatique >C6-C8	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
5:2	Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
norme EN ISO/IEC 17025:2017.	Fraction aromatique >C8-C10	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
17	Hydrocarbures totaux C10-C40	mg/kg Ms	33,2	20	+/- 21	ISO 16703
Ш	Fraction C10-C12		<4,0	4		ISO 16703
5	Fraction C12-C16		<4,0	4		ISO 16703
<u>ട</u>	Fraction C16-C20	mg/kg Ms	4,5	2	+/- 21	ISO 16703
\subseteq	Fraction C20-C24	+	7,0	2	+/- 21	ISO 16703
ne	Fraction C24-C28		7,2	2	+/- 21	ISO 16703
М	Fraction C28-C32	mg/kg Ms	6,8	2	+/- 21	ISO 16703
<u>a</u>	Fraction C32-C36		4,0	2	+/- 21	ISO 16703
o	Fraction C36-C40		<2,0	2		ISO 16703
accrédités selon la	Polychlorobiphényles		,			
tés	Somme 6 PCB	mg/kg Ms	n.d.			NEN-EN 16167
édi	Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.			NEN-EN 16167
S	PCB (28)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
nta	PCB (52)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
son	PCB (101)	mg/kg Ms	<0,001	0,001		NEN-EN 16167 NEN-EN 16167
2	PCB (101)	mg/kg Ms	<0,001	0,001		NEN-EN 16167 NEN-EN 16167
st E	PCB (118)	mg/kg Ms	<0,001	0,001		NEN-EN 16167 NEN-EN 16167
Ş.	PCB (150)	mg/kg Ms	<0,001	0,001		NEN-EN 16167 NEN-EN 16167
\vdash	PCB (180)	mg/kg Ms	<0,001	0,001		NEN-EN 16167 NEN-EN 16167
aramètres réalisés par AL-West BV			~0,001	0,001		INCIN-LIN IOIOI
g	Analyses sur éluat après lixivia	1	40.0	0.4		Colon resumes their deaths a
isé	L/S cumulé	ml/g	10,0	0,1		Selon norme lixiviation
éal	Conductivité électrique	μS/cm	83,5	5	+/- 10	Selon norme lixiviation
SS L	pH	00	8,9	0	+/- 5	Selon norme lixiviation
ètre	Température	°C	20,2	0		Selon norme lixiviation
am	Analyses Physico-chimiques s	1 1	,			
ä	Résidu à sec	ma/I	<100	100		Equivalent à NF EN ISO 15216

Résidu à sec mg/l <100 100 Equivalent à NF EN ISO 15216

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 20.06.2022 N° Client 35004955

RAPPORT D'ANALYSES

n° Cde 1165024 A2205-313_EPFLi_Combleux_sol

N° échant. 365365 Solide / Eluat

Spécification des échantillons S9 (3.5-4.5)

2	•	•	•	Limite	Incert.	
5		Unité	Résultat	Quant.	Résultat %	Méthode
	Fluorures (F)	mg/l	0,3	0,1	+/- 10	Conforme à ISO 10359-1, conforme à EN 16192
5	Indice phénol	mg/l	<0,010	0,01		NEN-EN 16192
	Chlorures (CI)	mg/l	0,8	0,1	+/- 10	Conforme à ISO 15923-1
5	Sulfates (SO4)	mg/l	6,8	5	+/- 10	Conforme à ISO 15923-1
3	COT	mg/l	<1,0	1		conforme EN 16192
3	Métaux sur éluat					
	Antimoine (Sb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
5	Arsenic (As)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
	Baryum (Ba)	μg/l	11	10	+/- 10	Conforme à EN-ISO 17294-2 (2004)
	Cadmium (Cd)	μg/l	<0,1	0,1		Conforme à EN-ISO 17294-2 (2004)
5	Chrome (Cr)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)
2	Cuivre (Cu)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)
Ś	Mercure	μg/l	° <0,03	0,03		méthode interne (conforme NEN- EN-ISO 12846)
:	Molybdène (Mo)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
1.	Nickel (Ni)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
5	Plomb (Pb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
)	Sélénium (Se)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
9	Zinc (Zn)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé.
Le calcul de l' incertitude de mesure analytique combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l' expression de l' incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordtest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d' élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance).

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Début des analyses: 10.06.2022 Fin des analyses: 17.06.2022

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

la norme

sont

ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du symbole " *)

(2004)

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110 e-Mail: info@al-west.nl, www.al-west.nl

AGROLAB
Your labs. Your service.

Date 20.06.2022 N° Client 35004955

GROUP

RAPPORT D'ANALYSES

Spécification des échantillons S9 (3.5-4.5)

AL-West B.V. Mme Fatima-Zahra Saati, Tel. 33/380680132 Chargée relation clientèle

et/ou externalisés sont marqués du symbole " *) ".

Seuls les paramètres non

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

ENVISOL 2-4, rue Hector Berlioz 38110 LA TOUR DU PIN **FRANCE**

> 20.06.2022 Date N° Client 35004955

> > Méthode

RAPPORT D'ANALYSES

n° Cde 1165024 A2205-313_EPFLi_Combleux_sol

Unité

N° échant. 365366 Solide / Eluat

Date de validation 10.06.2022 Prélèvement 07.06.2022 Prélèvement par: Client Spécification des échantillons S8 (0.05-1)

	Lixiviation					
L	Fraction >4mm (EN12457-2)	%	0	14,8	0,1	Selon norme lixiviation
	Masse brute Mh pour lixiviation *)	g	0	94	1	Selon norme lixiviation
	Lixiviation (EN 12457-2)		0			NF EN 12457-2
	Volume de lixiviant L ajouté pour l'extraction *)	ml		900	1	Selon norme lixiviation

Résultat

Limite

Quant.

Incert.

Résultat %

Prétraitement des échantillons

Masse échantillon total inférieure à 2 kg	kg	0	0,59	0		
Prétraitement de l'échantillon	-	0				Conforme à NEN-EN 16179
Broyeur à mâchoires		0				méthode interne
Matière sèche	%	0	96,1	0,01	+/- 1	NEN-EN 15934 ; EN12880

Calcul des Fractions solubles

Fraction soluble cumulé (var. L/S)	mg/kg Ms	0 - 1000	1000	Selon norme lixiviation
Antimoine cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
Arsenic cumulé (var. L/S)	mg/kg Ms	0,07	0,05	Selon norme lixiviation
Baryum cumulé (var. L/S)	mg/kg Ms	0 - 0,1	0,1	Selon norme lixiviation
Cadmium cumulé (var. L/S)	mg/kg Ms	0 - 0,001	0,001	Selon norme lixiviation
Chlorures cumulé (var. L/S)	mg/kg Ms	28	1	Selon norme lixiviation
Chrome cumulé (var. L/S)	mg/kg Ms	0 - 0,02	0,02	Selon norme lixiviation
COT cumulé (var. L/S)	mg/kg Ms	33	10	Selon norme lixiviation
Cuivre cumulé (var. L/S)	mg/kg Ms	0,03	0,02	Selon norme lixiviation
Fluorures cumulé (var. L/S)	mg/kg Ms	4,0	1	Selon norme lixiviation
Indice phénol cumulé (var. L/S)	mg/kg Ms	0 - 0,1	0,1	Selon norme lixiviation
Mercure cumulé (var. L/S)	mg/kg Ms	0 - 0,0003	0,0003	Selon norme lixiviation
Molybdène cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
Nickel cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
Plomb cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
Sélénium cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
Sulfates cumulé (var. L/S)	mg/kg Ms	56	50	Selon norme lixiviation
Zinc cumulé (var. L/S)	mg/kg Ms	0 - 0,02	0,02	Selon norme lixiviation

Analyses Physico-chimiques

	1111	300			Ocion nonne ilxiviation
Prétraitement des échantillo	ns				
Masse échantillon total inférieure à 2 kg	kg	° 0,59	0		
Prétraitement de l'échantillon		0			Conforme à NEN-EN 1617
Broyeur à mâchoires		0			méthode interne
Matière sèche	%	° 96,1	0,01	+/- 1	NEN-EN 15934 ; EN128
Calcul des Fractions soluble	es				
Fraction soluble cumulé (var. L/S)	*) mg/kg Ms	0 - 1000	1000		Selon norme lixiviation
Antimoine cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Arsenic cumulé (var. L/S)	*) mg/kg Ms	0,07	0,05		Selon norme lixiviation
Baryum cumulé (var. L/S)	*) mg/kg Ms	0 - 0,1	0,1		Selon norme lixiviation
Cadmium cumulé (var. L/S)	*) mg/kg Ms	0 - 0,001	0,001		Selon norme lixiviation
Chlorures cumulé (var. L/S)	*) mg/kg Ms	28	1		Selon norme lixiviation
Chrome cumulé (var. L/S)	*) mg/kg Ms	0 - 0,02	0,02		Selon norme lixiviation
COT cumulé (var. L/S)	*) mg/kg Ms	33	10		Selon norme lixiviation
Cuivre cumulé (var. L/S)	*) mg/kg Ms	0,03	0,02		Selon norme lixiviation
Fluorures cumulé (var. L/S)	*) mg/kg Ms	4,0	1		Selon norme lixiviation
Indice phénol cumulé (var. L/S)	*) mg/kg Ms	0 - 0,1	0,1		Selon norme lixiviation
Mercure cumulé (var. L/S)	*) mg/kg Ms	0 - 0,0003	0,0003		Selon norme lixiviation
Molybdène cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Nickel cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Plomb cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Sélénium cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Sulfates cumulé (var. L/S)	*) mg/kg Ms	56	50		Selon norme lixiviation
Zinc cumulé (var. L/S)	*) mg/kg Ms	0 - 0,02	0,02		Selon norme lixiviation
Analyses Physico-chimique	S				
pH-H2O		° 8,6	0,1	+/- 10	Cf. NEN-ISO 10390 (sol uniquement)
COT Carbone Organique Total	mg/kg Ms	3900	1000	+/- 16	conforme ISO 10694 (200
Sulfates cumulé (var. L/S) Zinc cumulé (var. L/S) Analyses Physico-chimique pH-H2O COT Carbone Organique Total Prétraitement pour analyses	des métaux	•		<u>'</u>	
					page 1 d

AL-West B.V.
Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Spécification des échantillons	S8 (0.05-1)				
	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Minéralisation à l'eau régale	0				NF-EN 16174; NF EN 13657 (déchets)
Métaux					
Arsenic (As)	mg/kg Ms	11	1	+/- 15	Conforme à EN-ISO 11885, EN 16174
Cadmium (Cd)	mg/kg Ms	<0,1	0,1		Conforme à EN-ISO 11885, EN 16174
Chrome (Cr)	mg/kg Ms	22	0,2	+/- 12	Conforme à EN-ISO 11885, EN 16174
Cuivre (Cu)	mg/kg Ms	5,7	0,2	+/- 20	Conforme à EN-ISO 11885, EN 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conforme à ISO 16772 et EN 16174
Nickel (Ni)	mg/kg Ms	15	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Plomb (Pb)	mg/kg Ms	9,7	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Zinc (Zn)	mg/kg Ms	30	1	+/- 22	Conforme à EN-ISO 11885, EN 16174
Hydrocarbures Aromatiques	Polycycliques (ISO)	·			
Naphtalène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Acénaphtylène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
1				1 1	

	Hydrocarbures Aromatiques Po	olycycliqu	ies (ISO)		
en en	Naphtalène	mg/kg Ms	<0,050	0,05	

	Acénaphtylène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
5	Acénaphtène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Ņ	Fluorène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Š	Phénanthrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
-	Anthracène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
וַ	Fluoranthène	mg/kg Ms	0,072	0,05	+/- 17	équivalent à NF EN 16181
5	Pyrène	mg/kg Ms	0,076	0,05	+/- 19	équivalent à NF EN 16181
2	Benzo(a)anthracène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
ū	Chrysène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Ē	Benzo(b)fluoranthène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
2	Benzo(k)fluoranthène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
<u>0</u>	Benzo(a)pyrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
5	Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Ŋ	Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
D D	Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
5	HAP (6 Borneff) - somme	mg/kg Ms	0,0720 x)			équivalent à NF EN 16181
3	Somme HAP (VROM)	mg/kg Ms	0,0720 x)			équivalent à NF EN 16181
ס =	HAP (EPA) - somme	mg/kg Ms	0,148 ×)			équivalent à NF EN 16181
_						

					Date	20.06.20
DARBORT BLANKL VOCO					N° Client	350049
RAPPORT D'ANALYSES						
n° Cde		!4 A2205-313_I	=PFLi_C	combleux_s	Ol	
N° échant.	365366	Solide / Eluat				
Spécification des échantillons	S8 (0.0	5-1)				
			Limite	Incert.		
	Unité	Résultat	Quant.	Résultat %	Méthode	
Minéralisation à l'eau régale	•				NF-EN 1	6174; NF EN 13657 (déchets)
Métaux					l	(docrioto)
Arsenic (As)	mg/kg Ms	11	1	+/- 15	Conforme	à EN-ISO 11885, E
· ·				1, 10	Conformo	16174 à EN-ISO 11885, E
Cadmium (Cd)	mg/kg Ms	<0,1	0,1			16174
Chrome (Cr)	mg/kg Ms	22	0,2	+/- 12	Conforme	à EN-ISO 11885, E 16174
Cuivre (Cu)	mg/kg Ms	5,7	0,2	+/- 20	Conforme	à EN-ISO 11885, E
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conform	16174 e à ISO 16772 et El
						16174
Nickel (Ni)	mg/kg Ms	15	0,5	+/- 11	Conforme	à EN-ISO 11885, E 16174
Plomb (Pb)	mg/kg Ms	9,7	0,5	+/- 11	Conforme	à EN-ISO 11885, E
Zinc (Zn)	mg/kg Ms	30	1	+/- 22	Conforme	16174 à EN-ISO 11885, E
, ,			· ·	1,		16174
Hydrocarbures Aromatiques						
Naphtalène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Acénaphtylène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Acénaphtène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Fluorène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Phénanthrène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Anthracène	mg/kg Ms	<0,050	0,05		équivale	ent à NF EN 1618
Fluoranthène	mg/kg Ms	0,072	0,05	+/- 17	équivale	ent à NF EN 1618
Pyrène	mg/kg Ms	0,076	0,05	+/- 19	équivale	ent à NF EN 1618
Benzo(a)anthracène	mg/kg Ms	<0,050	0,05		équivale	ent à NF EN 1618
Chrysène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Benzo(b)fluoranthène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Benzo(k)fluoranthène	mg/kg Ms	<0,050	0,05		· · · · · · · · · · · · · · · · · · ·	ent à NF EN 1618
Benzo(a)pyrène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
HAP (6 Borneff) - somme	mg/kg Ms	0,0720 ×)				ent à NF EN 1618
Somme HAP (VROM)	mg/kg Ms	0,0720 ×)				ent à NF EN 1618
HAP (EPA) - somme	mg/kg Ms	0,148 ×)			équivale	ent à NF EN 1618
Composés aromatiques						
Benzène	mg/kg Ms	<0,050	0,05			SO 22155
Toluène	mg/kg Ms	<0,050	0,05			SO 22155
Ethylbenzène	mg/kg Ms	<0,050	0,05			SO 22155
m,p-Xylène	mg/kg Ms	<0,10	0,1			SO 22155
o-Xylène	mg/kg Ms	<0,050	0,05			SO 22155
Naphtalène	mg/kg Ms	<0,10	0,1			SO 22155
Somme Xylènes	mg/kg Ms	n.d.	٥, ١			SO 22155
BTEX total	*) mg/kg Ms	n.d.		+		SO 22155
	····ə/.vg ivio	11.0.				20 22 100
COHV			0.00	1		00.00455
Chlorure de Vinyle	mg/kg Ms	<0,02	0,02			SO 22155
Dichlorométhane	mg/kg Ms	<0,05	0,05			SO 22155

\sim	\sim	L		١
C	v	г	1	V

mèt	Chlorure de Vinyle	mg/kg Ms	<0,02	0,02	ISO 22155
araı	Dichlorométhane	mg/kg Ms	<0,05	0,05	ISO 22155

RvA L 005

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

					Date	20.06.202
DADDODT DIAMAL VOCC					N° Client	3500495
RAPPORT D'ANALYSES						
n° Cde		24 A2205-313_E	:PFLi_C	ombleux_s	Ol	
N° échant.	36536	6 Solide / Eluat				
Spécification des échantillons	S8 (0.	05-1)				
			Limite	Incert.		
	Unité	Résultat	Quant.	Résultat %	Méthode	;
Trichlorométhane	mg/kg Ms	<0,05	0,05			ISO 22155
Tétrachlorométhane	mg/kg Ms	<0,05	0,05			ISO 22155
Trichloroéthylène	mg/kg Ms	0,30	0,05	+/- 16		ISO 22155
Tétrachloroéthylène 1,1,1-Trichloroéthane	mg/kg Ms mg/kg Ms	<0,05 <0,05	0,05			ISO 22155 ISO 22155
1,1,2-Trichloroéthane	mg/kg Ms	<0,05	0,05 0,05			ISO 22155
1,1-Dichloroéthane	mg/kg Ms	<0,10	0,03			ISO 22155
1,2-Dichloroéthane	mg/kg Ms	<0,05	0,05			ISO 22155
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	0,025			ISO 22155
1,1-Dichloroéthylène	mg/kg Ms	<0,10	0,1			ISO 22155
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	0,025			ISO 22155
Somme cis/trans-1,2-Dichloroéthylènes	mg/kg Ms	n.d.				ISO 22155
Hydrocarbures totaux (ISO)						
Fraction aliphatique C5-C6	mg/kg Ms	<0,20	0,2		conforme	e à NEN-EN-ISO 16558
Fraction C5-C10	mg/kg Ms	<1,0 ^{x)}	1			e à NEN-EN-ISO 16558
Fraction >C6-C8	mg/kg Ms	<0,40 ×)	0,4			à NEN-EN-ISO 16558
Fraction C8-C10	mg/kg Ms	<0,40 ×)	0,4			à NEN-EN-ISO 16558
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	0,2			è à NEN-EN-ISO 16558 è à NEN-EN-ISO 16558
Fraction aromatique >C6-C8	mg/kg Ms mg/kg Ms	<0,20 <0,20	0,2			à NEN-EN-ISO 16558
Fraction aliphatique >C8-C10 Fraction aromatique >C8-C10	mg/kg Ms	<0,20 <0,20	0,2			e à NEN-EN-ISO 16558
Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	20			ISO 16703
Fraction C10-C12	*) mg/kg Ms	<4,0	4			ISO 16703
Fraction C12-C16	*) mg/kg Ms	<4,0	4			ISO 16703
Fraction C16-C20	*) mg/kg Ms	<2,0	2			ISO 16703
Fraction C20-C24	*) mg/kg Ms	<2,0	2			ISO 16703
Fraction C24-C28	*) mg/kg Ms	<2,0	2			ISO 16703
Fraction C28-C32	*) mg/kg Ms	<2,0	2			ISO 16703
Fraction C32-C36	*) mg/kg Ms	<2,0	2			ISO 16703
Fraction C36-C40	*) mg/kg Ms	<2,0	2			ISO 16703
Polychlorobiphényles		ı				
Somme 6 PCB	mg/kg Ms	n.d.				EN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.	0.004			EN-EN 16167
PCB (28) PCB (52)	mg/kg Ms mg/kg Ms	<0,001 <0,001	0,001			IEN-EN 16167
PCB (101)	mg/kg Ms	<0,001	0,001			<u>IEN-EN 16167</u> IEN-EN 16167
PCB (118)	mg/kg Ms	<0,001	0,001			EN-EN 16167
PCB (138)	mg/kg Ms	<0,001	0,001			EN-EN 16167
PCB (153)	mg/kg Ms	<0,001	0,001			IEN-EN 16167
PCB (180)	mg/kg Ms	<0,001	0,001			IEN-EN 16167
Analyses sur éluat après lixiv	/iation					
L/S cumulé	ml/g	10,0	0,1		Selo	n norme lixiviation
Conductivité électrique	μS/cm	77,0	5	+/- 10		n norme lixiviation
рН		8,7	0	+/- 5	Selo	n norme lixiviation
Température	°C	20,3	0		Selo	on norme lixiviation
Analyses Physico-chimiques	sur éluat					
Résidu à sec	mg/l	<100	100		Equival	ent à NF EN ISO 15216

n ,	,				
Som	me 6 PCB	mg/kg Ms	n.d.		NEN-EN 16167
Som	me 7 PCB (Ballschmiter)	mg/kg Ms	n.d.		NEN-EN 16167
PCB	3 (28)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB	3 (52)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB	3 (101)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB	3 (118)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
g PCB	3 (138)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
₽CB	3 (153)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB	(180)	mg/kg Ms	<0,001	0,001	NEN-EN 16167

Šes	L/S cumulé	ml/g	10,0	0,1		Selon norme lixiviation
ä	Conductivité électrique	μS/cm	77,0	5	+/- 10	Selon norme lixiviation
<u>e</u>	рН		8,7	0	+/- 5	Selon norme lixiviation
ĕ	Température	°C	20,3	0		Selon norme lixiviation
11						

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 20.06.2022 N° Client 35004955

RAPPORT D'ANALYSES

n° Cde 1165024 A2205-313_EPFLi_Combleux_sol

N° échant. 365366 Solide / Eluat

Spécification des échantillons S8 (0.05-1)

	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Fluorures (F)	mg/l	0,4	0,1	+/- 10	Conforme à ISO 10359-1, conforme à EN 16192
Indice phénol	mg/l	<0,010	0,01		NEN-EN 16192
Chlorures (CI)	mg/l	2,8	0,1	+/- 10	Conforme à ISO 15923-1
Sulfates (SO4)	mg/l	5,6	5	+/- 10	Conforme à ISO 15923-1
COT	mg/l	3,3	1	+/- 10	conforme EN 16192
Métaux sur éluat					
Antimoine (Sb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Arsenic (As)	ug/l	6.9	5	+/- 10	Conforme à EN-ISO 17294-2

COT	IIIg/I	3,3	ı	+/- 10	COMOTHE EN 10192
Métaux sur éluat					
Antimoine (Sb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Arsenic (As)	μg/l	6,9	5	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Baryum (Ba)	µg/l	<10	10		Conforme à EN-ISO 17294-2 (2004)
Cadmium (Cd)	μg/l	<0,1	0,1		Conforme à EN-ISO 17294-2 (2004)
Chrome (Cr)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)
Cuivre (Cu)	μg/l	3,2	2	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Mercure	μg/l	° <0,03	0,03		méthode interne (conforme NEN- EN-ISO 12846)
Molybdène (Mo)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Nickel (Ni)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Plomb (Pb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Sélénium (Se)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Zinc (Zn)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé.
Le calcul de l' incertitude de mesure analytique combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l' expression de l' incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordtest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d' élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance).

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Début des analyses: 10.06.2022 Fin des analyses: 17.06.2022

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

la norme

sont

ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du symbole " *)

(2004)

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 20.06.2022 N° Client 35004955

RAPPORT D'ANALYSES

n° Cde 1165024 A2205-313_EPFLi_Combleux_sol N° échant. 365366 Solide / Eluat

Spécification des échantillons S8 (0.05-1)

AL-West B.V. Mme Fatima-Zahra Saati, Tel. 33/380680132 Chargée relation clientèle

et/ou externalisés sont marqués du symbole " *) ".

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

ENVISOL 2-4, rue Hector Berlioz 38110 LA TOUR DU PIN **FRANCE**

> 20.06.2022 Date N° Client 35004955

RAPPORT D'ANALYSES

n° Cde 1165024 A2205-313_EPFLi_Combleux_sol

N° échant. 365367 Solide / Eluat

Date de validation 10.06.2022 Prélèvement 07.06.2022 Prélèvement par: Client Spécification des échantillons S8 (3-4)

		Unité		Résultat	Quant.	Résultat %	Méthode
Lixivia	tion						
Fraction	n >4mm (EN12457-2)	%	•	15,6	0,1		Selon norme lixiviation
Masse b	rute Mh pour lixiviation *)	g	•	100	1		Selon norme lixiviation
Lixiviation	on (EN 12457-2)		0				NF EN 12457-2
Volume de	e lixiviant L ajouté pour l'extraction *)	ml		900	1		Selon norme lixiviation

Prétraitement des échantillons

Masse échantillon total inférieure à 2 kg	kg	0	0,74	0		
Prétraitement de l'échantillon	-	•				Conforme à NEN-EN 16179
Broyeur à mâchoires		0				méthode interne
Matière sèche	%	•	90,2	0,01	+/- 1	NEN-EN 15934 ; EN12880

Calcul des Fractions solubles

Fraction soluble cumulé (var. L/S)	mg/kg Ms	0 - 1000	1000	Selon norme lixiviation
Antimoine cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
Arsenic cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
Baryum cumulé (var. L/S)	mg/kg Ms	0,10	0,1	Selon norme lixiviation
Cadmium cumulé (var. L/S)	mg/kg Ms	0 - 0,001	0,001	Selon norme lixiviation
Chlorures cumulé (var. L/S)	mg/kg Ms	50	1	Selon norme lixiviation
Chrome cumulé (var. L/S)	mg/kg Ms	0 - 0,02	0,02	Selon norme lixiviation
COT cumulé (var. L/S)	mg/kg Ms	33	10	Selon norme lixiviation
Cuivre cumulé (var. L/S)	mg/kg Ms	0,03	0,02	Selon norme lixiviation
Fluorures cumulé (var. L/S)	mg/kg Ms	4,0	1	Selon norme lixiviation
Indice phénol cumulé (var. L/S)	mg/kg Ms	0 - 0,1	0,1	Selon norme lixiviation
Mercure cumulé (var. L/S)	mg/kg Ms	0 - 0,0003	0,0003	Selon norme lixiviation
Molybdène cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
Nickel cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
Plomb cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
Sélénium cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
Sulfates cumulé (var. L/S)	mg/kg Ms	71	50	Selon norme lixiviation
Zinc cumulé (var. L/S)	mg/kg Ms	0 - 0,02	0,02	Selon norme lixiviation

	Unité		Résultat	Limite Quant.	Incert. Résultat %	Méthode
Lixiviation						
Fraction >4mm (EN12457-2)	%	•	15,6	0,1		Selon norme lixiviation
Masse brute Mh pour lixiviation	*) g	۰	100	1		Selon norme lixiviation
Lixiviation (EN 12457-2)		•				NF EN 12457-2
Volume de lixiviant L ajouté pour l'extraction	on *) ml		900	1		Selon norme lixiviation
Prétraitement des échantille	ons					
Masse échantillon total inférieure à 2 kg	kg	•	0,74	0		
Prétraitement de l'échantillon		•				Conforme à NEN-EN 1617
Broyeur à mâchoires		۰				méthode interne
Matière sèche	%	۰	90,2	0,01	+/- 1	NEN-EN 15934 ; EN128
Calcul des Fractions solubl	es					
Fraction soluble cumulé (var. L/S)	*) mg/kg Ms		0 - 1000	1000		Selon norme lixiviation
Antimoine cumulé (var. L/S)	*) mg/kg Ms		0 - 0,05	0,05		Selon norme lixiviation
Arsenic cumulé (var. L/S)	*) mg/kg Ms		0 - 0,05	0,05		Selon norme lixiviation
Baryum cumulé (var. L/S)	*) mg/kg Ms		0,10	0,1		Selon norme lixiviation
Cadmium cumulé (var. L/S)	*) mg/kg Ms		0 - 0,001	0,001		Selon norme lixiviation
Chlorures cumulé (var. L/S)	*) mg/kg Ms		50	1		Selon norme lixiviation
Chrome cumulé (var. L/S)	*) mg/kg Ms		0 - 0,02	0,02		Selon norme lixiviation
COT cumulé (var. L/S)	*) mg/kg Ms		33	10		Selon norme lixiviation
Cuivre cumulé (var. L/S)	*) mg/kg Ms		0,03	0,02		Selon norme lixiviation
Fluorures cumulé (var. L/S)	*) mg/kg Ms		4,0	1		Selon norme lixiviation
Indice phénol cumulé (var. L/S)	*) mg/kg Ms		0 - 0,1	0,1		Selon norme lixiviation
Mercure cumulé (var. L/S)	*) mg/kg Ms	C	- 0,0003	0,0003		Selon norme lixiviation
Molybdène cumulé (var. L/S)	*) mg/kg Ms		0 - 0,05	0,05		Selon norme lixiviation
Nickel cumulé (var. L/S)	*) mg/kg Ms		0 - 0,05	0,05		Selon norme lixiviation
Plomb cumulé (var. L/S)	*) mg/kg Ms		0 - 0,05	0,05		Selon norme lixiviation
Sélénium cumulé (var. L/S)	*) mg/kg Ms		0 - 0,05	0,05		Selon norme lixiviation
Sulfates cumulé (var. L/S)	*) mg/kg Ms		71	50		Selon norme lixiviation
Zinc cumulé (var. L/S)	*) mg/kg Ms		0 - 0,02	0,02		Selon norme lixiviation
Analyses Physico-chimique	es					
pH-H2O		0	8,7	0,1	+/- 10	Cf. NEN-ISO 10390 (sol uniquement)
COT Carbone Organique Total	mg/kg Ms		8200	1000	+/- 16	conforme ISO 10694 (200

AL-West B.V.
Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

RAPPORT D'ANALYSES

	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Minéralisation à l'eau régale	0				NF-EN 16174; NF EN 13657 (déchets)
Métaux					
Arsenic (As)	mg/kg Ms	13	1	+/- 15	Conforme à EN-ISO 11885, EN 16174
Cadmium (Cd)	mg/kg Ms	<0,1	0,1		Conforme à EN-ISO 11885, EN 16174
Chrome (Cr)	mg/kg Ms	23	0,2	+/- 12	Conforme à EN-ISO 11885, EN 16174
Cuivre (Cu)	mg/kg Ms	8,0	0,2	+/- 20	Conforme à EN-ISO 11885, EN 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conforme à ISO 16772 et EN 16174
Nickel (Ni)	mg/kg Ms	17	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Plomb (Pb)	mg/kg Ms	13	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Zinc (Zn)	mg/kg Ms	36	1	+/- 22	Conforme à EN-ISO 11885, EN 16174

Hydrocarburge Aromatiques Polycycliques (ISO)				
	I brahma a ambruma a	A ====================================	Delverselierree	(ICO)

ilyarooarbaroo / tromatiquo	o i oiyoyonqado ((100)			
Naphtalène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Acénaphtylène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Acénaphtène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Fluorène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Phénanthrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Anthracène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Fluoranthène	mg/kg Ms	0,098	0,05	+/- 17	équivalent à NF EN 16181
Pyrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Benzo(a)anthracène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Chrysène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Benzo(b)fluoranthène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Benzo(k)fluoranthène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Benzo(a)pyrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
HAP (6 Borneff) - somme	mg/kg Ms	0,0980 x)			équivalent à NF EN 16181
Somme HAP (VROM)	mg/kg Ms	0,0980 x)			équivalent à NF EN 16181
HAP (EPA) - somme	mg/kg Ms	0,0980 ^{x)}			équivalent à NF EN 16181
C					

					Date	20.06.20
DADDODT DIAMAI VOCC					N° Client	350049
RAPPORT D'ANALYSES	440500	4 40005 040 5				
n° Cde		4 A2205-313_E	:PFLI_C	ombleux_so	OI .	
N° échant.		Solide / Eluat				
Spécification des échantillons	S8 (3-4)					
	11.77	D	Limite	Incert.	NAC I	
	Unité	Résultat	Quant.	Résultat %	Méthode	
Minéralisation à l'eau régale	•				NF-EN	16174; NF EN 13657 (déchets)
Métaux					·	·
Arsenic (As)	mg/kg Ms	13	1	+/- 15	Conforme	à EN-ISO 11885, E
Cadmium (Cd)	mg/kg Ms	<0,1	0,1		Conforme	16174 à EN-ISO 11885, E
. ,		·				16174
Chrome (Cr)	mg/kg Ms	23	0,2	+/- 12	Conforme	à EN-ISO 11885, E 16174
Cuivre (Cu)	mg/kg Ms	8,0	0,2	+/- 20	Conforme	à EN-ISO 11885, E 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conform	e à ISO 16772 et EN
	mg/kg Ms	17		+/- 11	Conforma	16174 à EN-ISO 11885, E
Nickel (Ni)			0,5			16174
Plomb (Pb)	mg/kg Ms	13	0,5	+/- 11	Conforme	à EN-ISO 11885, E 16174
Zinc (Zn)	mg/kg Ms	36	1	+/- 22	Conforme	à EN-ISO 11885, E
Lludrocarburos Aromoticus	Delvevelieuse /I	60)				16174
Hydrocarbures Aromatiques Naphtalène	mg/kg Ms	<0,050	0,05		équival	ent à NF EN 1618
Acénaphtylène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Acénaphtène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Fluorène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Phénanthrène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Anthracène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Fluoranthène	mg/kg Ms	0,098	0,05	+/- 17		ent à NF EN 1618
Pyrène	mg/kg Ms	<0,050	0,05	., .,		ent à NF EN 1618
Benzo(a)anthracène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Chrysène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Benzo(b)fluoranthène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Benzo(k)fluoranthène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Benzo(a)pyrène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050				ent à NF EN 1618
	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Indéno(1,2,3-cd)pyrène	mg/kg Ms		0,05			ent à NF EN 1618
HAP (6 Borneff) - somme		0,0980 x)				
Somme HAP (VROM)	mg/kg Ms	0,0980 x)				ent à NF EN 1618
HAP (EPA) - somme	mg/kg Ms	0,0980 x)			equivai	ent à NF EN 1618
Composés aromatiques						
Benzène	mg/kg Ms	<0,050	0,05			SO 22155
Toluène	mg/kg Ms	<0,050	0,05			SO 22155
Ethylbenzène	mg/kg Ms	<0,050	0,05			SO 22155
m,p-Xylène	mg/kg Ms	<0,10	0,1			SO 22155
o-Xylène	mg/kg Ms	<0,050	0,05			SO 22155
Naphtalène	mg/kg Ms	<0,10	0,1			SO 22155
Somme Xylènes	mg/kg Ms	n.d.	٥, ١			SO 22155
BTEX total	*) mg/kg Ms	n.d.				SO 22155
	1 3 3 1				1	
COHV			0.00		1	00.00455
Chlorure de Vinyle	mg/kg Ms	<0,02	0,02			SO 22155
Dichlorométhane	mg/kg Ms	<0,05	0,05			SO 22155

COHV

mèt	Chlorure de Vinyle	mg/kg Ms	<0,02	0,02	ISO 22155
araı	Dichlorométhane	mg/kg Ms	<0,05	0,05	ISO 22155

RvA L 005

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

RAPPORT D'ANALYSES

	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Trichlorométhane	mg/kg Ms	<0,05	0,05		ISO 22155
Tétrachlorométhane	mg/kg Ms	<0,05	0,05		ISO 22155
Trichloroéthylène	mg/kg Ms	0,07	0,05	+/- 16	ISO 22155
Tétrachloroéthylène	mg/kg Ms	<0,05	0,05		ISO 22155
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
1,1,2-Trichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
1,1-Dichloroéthane	mg/kg Ms	<0,10	0,1		ISO 22155
1,2-Dichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	0,025		ISO 22155
1,1-Dichloroéthylène	mg/kg Ms	<0,10	0,1		ISO 22155
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	0,025		ISO 22155
Somme cis/trans-1,2-Dichloroéthylènes	mg/kg Ms	n.d.			ISO 22155
Hydrocarbures totaux (ISO)					\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

3	Hydrocarbures totaux (ISO)					
5	Fraction aliphatique C5-C6	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
3	Fraction C5-C10	mg/kg Ms	<1,0 x)	1		conforme à NEN-EN-ISO 16558-1
2	Fraction >C6-C8	mg/kg Ms	<0,40 ×)	0,4		conforme à NEN-EN-ISO 16558-1
2	Fraction C8-C10	mg/kg Ms	<0,40 ×)	0,4		conforme à NEN-EN-ISO 16558-1
	Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
5	Fraction aromatique >C6-C8	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
	Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
7	Fraction aromatique >C8-C10	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
-	Hydrocarbures totaux C10-C40	mg/kg Ms	82,3	20	+/- 21	ISO 16703
í	Fraction C10-C12	mg/kg Ms	<4,0	4		ISO 16703
Ò	Fraction C12-C16	mg/kg Ms	<4,0	4		ISO 16703
•	Fraction C16-C20	mg/kg Ms	3,7	2	+/- 21	ISO 16703
ī	Fraction C20-C24	mg/kg Ms	5,2	2	+/- 21	ISO 16703
2	Fraction C24-C28	mg/kg Ms	10,4	2	+/- 21	ISO 16703
2	Fraction C28-C32	mg/kg Ms	18	2	+/- 21	ISO 16703
2	Fraction C32-C36	mg/kg Ms	25,1	2	+/- 21	ISO 16703
5	Fraction C36-C40	mg/kg Ms	19.2	2	+/- 21	ISO 16703

Polychlorobiphényles

1 diyaniarasiphenyies							
Somme 6 PCB	mg/kg Ms	0,065 x)		NEN-EN 16167			
Somme 7 PCB (Ballschmiter)	mg/kg Ms	0,082 ×)		NEN-EN 16167			
PCB (28)	mg/kg Ms	<0,001 0,001		NEN-EN 16167			
PCB (52)	mg/kg Ms	0,014 0,001	+/- 33	NEN-EN 16167			
PCB (101)	mg/kg Ms	0,022 0,001	+/- 34	NEN-EN 16167			
PCB (118)	mg/kg Ms	0,017 0,001	+/- 19	NEN-EN 16167			
PCB (138)	mg/kg Ms	0,014 0,001	+/- 30	NEN-EN 16167			
PCB (153)	mg/kg Ms	0,011 0,001	+/- 22	NEN-EN 16167			
PCB (180)	mg/kg Ms	0,004 0,001	+/- 12	NEN-EN 16167			

Analyses sur éluat après lixiviation

					Date	20.06.202
					N° Client	350049
RAPPORT D'ANALYSES						
n° Cde	1165024 A		EPFLi_C	ombleux_s	ol	
N° échant.	365367 So	lide / Eluat				
Spécification des échantillons	S8 (3-4)					
			Limite	Incert.		
	Unité	Résultat	Quant.	Résultat %	Méthode	
Trichlorométhane	mg/kg Ms	<0,05	0,05			ISO 22155
Tétrachlorométhane	mg/kg Ms	<0,05	0,05			ISO 22155
Trichloroéthylène	mg/kg Ms	0,07	0,05	+/- 16		ISO 22155
Tétrachloroéthylène	mg/kg Ms	<0,05	0,05			ISO 22155
1,1,1-Trichloroéthane 1,1,2-Trichloroéthane	mg/kg Ms mg/kg Ms	<0,05 <0,05	0,05 0,05			ISO 22155 ISO 22155
1,1-Dichloroéthane	mg/kg Ms	<0,05	0,05			ISO 22155
1,2-Dichloroéthane	mg/kg Ms	<0,10	0,05			ISO 22155
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	0,025			ISO 22155
1,1-Dichloroéthylène	mg/kg Ms	<0,10	0,1			ISO 22155
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	0,025			ISO 22155
Somme cis/trans-1,2-Dichloroéthylènes	mg/kg Ms	n.d.				ISO 22155
Hydrocarbures totaux (ISO)						
Fraction aliphatique C5-C6	mg/kg Ms	<0,20	0,2		conforme	à NEN-EN-ISO 1655
Fraction C5-C10	mg/kg Ms	<1,0 ^{x)}	1			à NEN-EN-ISO 1655
Fraction >C6-C8	mg/kg Ms	<0,40 ×)	0,4			à NEN-EN-ISO 1655
Fraction C8-C10	mg/kg Ms	<0,40 ×)	0,4			à NEN-EN-ISO 1655
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	0,2			à NEN-EN-ISO 1655
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	0,2			à NEN-EN-ISO 1655
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	0,2			à NEN-EN-ISO 1655
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	0,2	/ 04	conforme	à NEN-EN-ISO 1655
Hydrocarbures totaux C10-C40	mg/kg Ms *) mg/kg Ms	82,3	20	+/- 21		ISO 16703
Fraction C10-C12 Fraction C12-C16	*) mg/kg Ms	<4,0 <4,0	4			ISO 16703 ISO 16703
Fraction C16-C20	*) mg/kg Ms	3,7	2	+/- 21		ISO 16703
Fraction C20-C24	*) mg/kg Ms	5,2	2	+/- 21		ISO 16703
Fraction C24-C28	*) mg/kg Ms	10,4	2	+/- 21		ISO 16703
Fraction C28-C32	*) mg/kg Ms	18	2	+/- 21		ISO 16703
Fraction C32-C36	*) mg/kg Ms	25,1	2	+/- 21		ISO 16703
Fraction C36-C40	*) mg/kg Ms	19,2	2	+/- 21		ISO 16703
Polychlorobiphényles				·	·	
Somme 6 PCB	mg/kg Ms	0,065 x)			N	EN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	0,082 x)				EN-EN 16167
PCB (28)	mg/kg Ms	<0,001	0,001			EN-EN 16167
PCB (52)	mg/kg Ms	0,014	0,001	+/- 33	N	EN-EN 16167
PCB (101)	mg/kg Ms	0,022	0,001	+/- 34	N	EN-EN 16167
PCB (118)	mg/kg Ms	0,017	0,001	+/- 19		EN-EN 16167
PCB (138)	mg/kg Ms	0,014	0,001	+/- 30		EN-EN 16167
PCB (153)	mg/kg Ms	0,011	0,001	+/- 22		EN-EN 16167
PCB (180)	mg/kg Ms	0,004	0,001	+/- 12	N	EN-EN 16167
Analyses sur éluat après lixi					1	
L/S cumulé	ml/g	10,0	0,1			n norme lixiviation
Conductivité électrique	μS/cm	110	5	+/- 10		n norme lixiviation
pH	00	8,2	0	+/- 5		n norme lixiviation
Température	°C	20,9	0		Selo	n norme lixiviation
Analyses Physico-chimiques					1	A MEENICO
Résidu à sec	mg/l	<100	100		Equivale	ent à NF EN ISO 1521

Analy	ses Ph	ysico-ch	imiques	sur éluat
-------	--------	----------	---------	-----------

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 20.06.2022 N° Client 35004955

RAPPORT D'ANALYSES

n° Cde 1165024 A2205-313_EPFLi_Combleux_sol

N° échant. 365367 Solide / Eluat

Spécification des échantillons S8 (3-4)

		Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
3	Fluorures (F)	mg/l	0,4	0,1	+/- 10	Conforme à ISO 10359-1, conforme à EN 16192
	Indice phénol	mg/l	<0,010	0,01		NEN-EN 16192
	Chlorures (CI)	mg/l	5,0	0,1	+/- 10	Conforme à ISO 15923-1
•	Sulfates (SO4)	mg/l	7,1	5	+/- 10	Conforme à ISO 15923-1
	COT	mg/l	3,3	1	+/- 10	conforme EN 16192
3	Métaux sur éluat					
5	Antimoine (Sb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
,						0 () ENLIGO (700) (0

WELAUX SUI EIUAL					
Antimoine (Sb)	µg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Arsenic (As)	µg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Baryum (Ba)	µg/l	10	10	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Cadmium (Cd)	μg/l	<0,1	0,1		Conforme à EN-ISO 17294-2 (2004)
Chrome (Cr)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)
Cuivre (Cu)	μg/l	3,4	2	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Mercure	μg/l	° <0,03	0,03		méthode interne (conforme NEN- EN-ISO 12846)
Molybdène (Mo)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Nickel (Ni)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Plomb (Pb)	µg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Sélénium (Se)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Zinc (Zn)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé.
Le calcul de l' incertitude de mesure analytique combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l' expression de l' incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordtest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d' élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance).

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Début des analyses: 10.06.2022 Fin des analyses: 17.06.2022

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

la norme

ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du symbole " *)

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110 e-Mail: info@al-west.nl, www.al-west.nl

AGROLAB GROUP
Your labs. Your service.

Date 20.06.2022 N° Client 35004955

RAPPORT D'ANALYSES

n° Cde **1165024** A2205-313_EPFLi_Combleux_sol N° échant. **365367** Solide / Eluat

Spécification des échantillons S8 (3-4)

AL-West B.V. Mme Fatima-Zahra Saati, Tel. 33/380680132 Chargée relation clientèle

et/ou externalisés sont marqués du symbole " *) ".

accrédités

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

ENVISOL 2-4, rue Hector Berlioz 38110 LA TOUR DU PIN **FRANCE**

> Date 20.06.2022 N° Client 35004955

RAPPORT D'ANALYSES

n° Cde 1165024 A2205-313_EPFLi_Combleux_sol

N° échant. 365368 Solide / Eluat

Date de validation 10.06.2022 Prélèvement 07.06.2022 Prélèvement par: Client Spécification des échantillons S10 (0.05-1)

		Unité		Résultat	Quant.	Résultat %	Méthode
Li	xiviation						
- Fr	action >4mm (EN12457-2)	%	۰	<0,1	0,1		Selon norme lixiviation
Ma	asse brute Mh pour lixiviation *)	g	۰	94	1		Selon norme lixiviation
Li	kiviation (EN 12457-2)		۰				NF EN 12457-2
Vo	lume de lixiviant L ajouté pour l'extraction *)	ml		900	1		Selon norme lixiviation

Prétraitement des échantillons

Masse echantillon total interieure a 2 kg	∣kg		0,49	0		
Prétraitement de l'échantillon	-	0				Conforme à NEN-EN 16179
Matière sèche	%	•	96,1	0,01	+/- 1	NEN-EN 15934 ; EN12880

Calcul des Fractions solubles

Fraction soluble cumulé (var. L/S)	mg/kg Ms	0 - 1000	1000	Selon norme lixiviation
Antimoine cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
Arsenic cumulé (var. L/S)	mg/kg Ms	0,07	0,05	Selon norme lixiviation
Baryum cumulé (var. L/S)	mg/kg Ms	0 - 0,1	0,1	Selon norme lixiviation
Cadmium cumulé (var. L/S)	mg/kg Ms	0 - 0,001	0,001	Selon norme lixiviation
Chlorures cumulé (var. L/S)	mg/kg Ms	40	1	Selon norme lixiviation
Chrome cumulé (var. L/S)	mg/kg Ms	0 - 0,02	0,02	Selon norme lixiviation
COT cumulé (var. L/S)	mg/kg Ms	33	10	Selon norme lixiviation
Cuivre cumulé (var. L/S)	mg/kg Ms	0,08	0,02	Selon norme lixiviation
Fluorures cumulé (var. L/S)	mg/kg Ms	5,0	1	Selon norme lixiviation
Indice phénol cumulé (var. L/S)	mg/kg Ms	0 - 0,1	0,1	Selon norme lixiviation
Mercure cumulé (var. L/S)	mg/kg Ms	0,0007	0,0003	Selon norme lixiviation
Molybdène cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
Nickel cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
Plomb cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
Sélénium cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
Sulfates cumulé (var. L/S)	mg/kg Ms	71	50	Selon norme lixiviation
Zinc cumulé (var. L/S)	mg/kg Ms	0 - 0,02	0,02	Selon norme lixiviation

Analyses Physico-chimiques

Spécification des échantillons	S 10	0 (0.05-1)		Limite	Incert.	
	Unité		Résultat	Quant.	Résultat %	Méthode
Lixiviation						
Fraction >4mm (EN12457-2)	%	0	<0,1	0,1		Selon norme lixiviation
Masse brute Mh pour lixiviation	*) g	0	94	1		Selon norme lixiviation
Lixiviation (EN 12457-2)		•				NF EN 12457-2
Volume de lixiviant L ajouté pour l'extraction	n *) ml		900	11		Selon norme lixiviation
Prétraitement des échantillo	ns					
Masse échantillon total inférieure à 2 kg	kg	0	0,49	0		
Prétraitement de l'échantillon	-	•				Conforme à NEN-EN 16179
Matière sèche	%	•	96,1	0,01	+/- 1	NEN-EN 15934 ; EN1288
Calcul des Fractions soluble	es					
Fraction soluble cumulé (var. L/S)	*) mg/kg Ms		0 - 1000	1000		Selon norme lixiviation
Antimoine cumulé (var. L/S)	*) mg/kg Ms		0 - 0,05	0,05		Selon norme lixiviation
Arsenic cumulé (var. L/S)	*) mg/kg Ms		0,07	0,05		Selon norme lixiviation
Baryum cumulé (var. L/S)	*) mg/kg Ms		0 - 0,1	0,1		Selon norme lixiviation
Cadmium cumulé (var. L/S)	*) mg/kg Ms	(0,001	0,001		Selon norme lixiviation
Chlorures cumulé (var. L/S)	*) mg/kg Ms		40	1		Selon norme lixiviation
Chrome cumulé (var. L/S)	*) mg/kg Ms		0 - 0,02	0,02		Selon norme lixiviation
COT cumulé (var. L/S)	*) mg/kg Ms		33	10		Selon norme lixiviation
Cuivre cumulé (var. L/S)	*) mg/kg Ms		0,08	0,02		Selon norme lixiviation
Fluorures cumulé (var. L/S)	*) mg/kg Ms		5,0	1		Selon norme lixiviation
Indice phénol cumulé (var. L/S)	*) mg/kg Ms		0 - 0,1	0,1		Selon norme lixiviation
Mercure cumulé (var. L/S)	*) mg/kg Ms		0,0007	0,0003		Selon norme lixiviation
Molybdène cumulé (var. L/S)	*) mg/kg Ms		0 - 0,05	0,05		Selon norme lixiviation
Nickel cumulé (var. L/S)	*) mg/kg Ms		0 - 0,05	0,05		Selon norme lixiviation
Plomb cumulé (var. L/S)	*) mg/kg Ms		0 - 0,05	0,05		Selon norme lixiviation
Sélénium cumulé (var. L/S)	*) mg/kg Ms		0 - 0,05	0,05		Selon norme lixiviation
Sulfates cumulé (var. L/S)	*) mg/kg Ms		71	50		Selon norme lixiviation
Zinc cumulé (var. L/S)	*) mg/kg Ms		0 - 0,02	0,02		Selon norme lixiviation
Analyses Physico-chimiques	5					
pH-H2O		٥	8,9	0,1	+/- 10	Cf. NEN-ISO 10390 (sol uniquement)
COT Carbone Organique Total	mg/kg Ms		4400	1000	+/- 16	conforme ISO 10694 (2008
Prétraitement pour analyses	des métaux					
Minéralisation à l'eau régale		0				NF-EN 16174; NF EN 13657 (déchets)

Prétraitement	nour	analyeas	aah	mátaux
rienanement	DOUL	allalvaes	ues	IIIElaux

Minéralisation à l'eau régale	•	NF-EN 16174; NF EN 13657	7

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

n° Cde	116502	2 4 A2205-313_E	EPFLi_C	Combleux_sol	
N° échant.	365368	Solide / Eluat			
Spécification des échantillons	S10 (0.	05-1)			
e openication des conditions	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Métaux					
Arsenic (As)	mg/kg Ms	12	1	+/- 15	Conforme à EN-ISO 11885, EN 16174
Cadmium (Cd)	mg/kg Ms	<0,1	0,1		Conforme à EN-ISO 11885, EN 16174
Chrome (Cr)	mg/kg Ms	26	0,2	+/- 12	Conforme à EN-ISO 11885, EN 16174
Cuivre (Cu)	mg/kg Ms	9,2	0,2	+/- 20	Conforme à EN-ISO 11885, EN 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conforme à ISO 16772 et EN 16174
Nickel (Ni)	mg/kg Ms	19	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Plomb (Pb)	mg/kg Ms	17	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Zinc (Zn)	mg/kg Ms	41	1	+/- 22	Conforme à EN-ISO 11885, EN 16174
Hydrocarbures Aromatique	es Polycycliques (l	ISO)			
Naphtalène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Acénaphtylène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Acénaphtène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Fluorène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Phénanthrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Anthracène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Fluoranthène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Pyrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Benzo(a)anthracène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Chrysène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Benzo(b)fluoranthène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Benzo(k)fluoranthène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Benzo(a)pyrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
HAP (6 Borneff) - somme	ma/ka Ms	n d	, -		équivalent à NF FN 16181

					Date	20.06.202
					N° Client	350049
RAPPORT D'ANALYSES						
n° Cde	116502	24 A2205-313_E	EPFLi_C	combleux_s	ol	
N° échant.	365368	Solide / Eluat				
Spécification des échantillons	S10 (0.	05-1)				
•	`	,	Limite	Incert.		
	Unité	Résultat	Quant.	Résultat %	Méthode	
Métaux						
Arsenic (As)	mg/kg Ms	12	1	+/- 15	Conform	ne à EN-ISO 11885, E 16174
Cadmium (Cd)	mg/kg Ms	<0,1	0,1		Conform	ne à EN-ISO 11885, E
Chrome (Cr)	mg/kg Ms	26	0,2	+/- 12	Conform	16174 ne à EN-ISO 11885, E
. ,						16174
Cuivre (Cu)	mg/kg Ms	9,2	0,2	+/- 20		ne à EN-ISO 11885, E 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Confor	me à ISO 16772 et EN 16174
Nickel (Ni)	mg/kg Ms	19	0,5	+/- 11	Conform	ne à EN-ISO 11885, E
Plomb (Pb)	mg/kg Ms	17	0,5	+/- 11	Conform	16174 ne à EN-ISO 11885, E
` '						16174
Zinc (Zn)	mg/kg Ms	41	1	+/- 22	Conform	ne à EN-ISO 11885, E 16174
Hydrocarbures Aromatiques I	Polycycliques (ISO)			<u> </u>	-
Naphtalène	mg/kg Ms	<0,050	0,05		éguiva	lent à NF EN 1618
Acénaphtylène	mg/kg Ms	<0,050	0,05			lent à NF EN 1618
Acénaphtène	mg/kg Ms	<0,050	0,05			lent à NF EN 1618
Fluorène	mg/kg Ms	<0,050	0,05			lent à NF EN 1618
Phénanthrène	mg/kg Ms	<0,050	0,05			lent à NF EN 1618
Anthracène	mg/kg Ms	<0,050	0,05		éguiva	lent à NF EN 1618
Fluoranthène	mg/kg Ms	<0,050	0,05			lent à NF EN 1618
Pyrène	mg/kg Ms	<0,050	0,05			lent à NF EN 1618
Benzo(a)anthracène	mg/kg Ms	<0,050	0,05			lent à NF EN 1618
Chrysène	mg/kg Ms	<0,050	0,05			lent à NF EN 1618
Benzo(b)fluoranthène	mg/kg Ms	<0,050	0,05			lent à NF EN 1618
Benzo(k)fluoranthène	mg/kg Ms	<0,050	0,05			lent à NF EN 1618
Benzo(a)pyrène	mg/kg Ms	<0,050	0,05			lent à NF EN 1618
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,05			lent à NF EN 1618
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	0,05			lent à NF EN 1618
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	0,05			lent à NF EN 1618
HAP (6 Borneff) - somme	mg/kg Ms	n.d.	0,03			lent à NF EN 1618
Somme HAP (VROM)	mg/kg Ms	n.d.				elent à NF EN 1618
HAP (EPA) - somme	mg/kg Ms	n.d.				lent à NF EN 1618
	ilig/kg ivis	11.0.			cquive	IICHEAN LIVIOIO
Composés aromatiques						
Benzène	mg/kg Ms	<0,050	0,05			ISO 22155
Toluène	mg/kg Ms	<0,050	0,05			ISO 22155
Ethylbenzène	mg/kg Ms	<0,050	0,05			ISO 22155
m,p-Xylène	mg/kg Ms	<0,10	0,1			ISO 22155
o-Xylène	mg/kg Ms	<0,050	0,05			ISO 22155
Naphtalène	mg/kg Ms	<0,10	0,1			ISO 22155
Somme Xylènes	mg/kg Ms	n.d.				ISO 22155
BTEX total	*) mg/kg Ms	n.d.				ISO 22155
COHV						
Chlorure de Vinyle	mg/kg Ms	<0,02	0,02			ISO 22155
Dichlorométhane	mg/kg Ms	<0,05	0,05			ISO 22155
Trichlorométhane	mg/kg Ms	<0,05	0,05			ISO 22155
,	mg/kg Ms	<0,05	0,05			ISO 22155

COHV

ĸ	00.11				
_	Chlorure de Vinyle	mg/kg Ms	<0,02	0,02	ISO 22155
ב ב	Dichlorométhane	mg/kg Ms	<0,05	0,05	ISO 22155
=	Trichlorométhane	mg/kg Ms	<0,05	0,05	ISO 22155
ם ם	Tétrachlorométhane	mg/kg Ms	<0,05	0,05	ISO 22155

RvA L 005

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Trichloroéthylène	mg/kg Ms	0,36	0,05	+/- 16	ISO 22155
Tétrachloroéthylène	mg/kg Ms	0,14	0,05	+/- 21	ISO 22155
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
1,1,2-Trichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
1,1-Dichloroéthane	mg/kg Ms	<0,10	0,1		ISO 22155
1,2-Dichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	0,025		ISO 22155
1,1-Dichloroéthylène	mg/kg Ms	<0,10	0,1		ISO 22155
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	0,025		ISO 22155
Somme cis/trans-1,2-Dichloroéthylènes	mg/kg Ms	n.d.			ISO 22155

Hvdrocarbures totaux (IS)	D١	
---------------------------	----	--

Ś	riyurocarbur e s totaux (130)					
Ś	Fraction aliphatique C5-C6	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
3	Fraction C5-C10	mg/kg Ms	<1,0 ^{x)}	1		conforme à NEN-EN-ISO 16558-1
3	Fraction >C6-C8	mg/kg Ms	<0,40 x)	0,4		conforme à NEN-EN-ISO 16558-1
3	Fraction C8-C10	mg/kg Ms	<0,40 x)	0,4		conforme à NEN-EN-ISO 16558-1
2	Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
2	Fraction aromatique >C6-C8	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
	Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
5	Fraction aromatique >C8-C10	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
	Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	20		ISO 16703
7	Fraction C10-C12	mg/kg Ms	<4,0	4		ISO 16703
-	Fraction C12-C16	mg/kg Ms	<4,0	4		ISO 16703
í	Fraction C16-C20	mg/kg Ms	<2,0	2		ISO 16703
Ò	Fraction C20-C24	mg/kg Ms	<2,0	2		ISO 16703
•	Fraction C24-C28	mg/kg Ms	<2,0	2		ISO 16703
j	Fraction C28-C32	mg/kg Ms	2,2	2	+/- 21	ISO 16703
2	Fraction C32-C36	mg/kg Ms	<2,0	2		ISO 16703
5	Fraction C36-C40	mg/kg Ms	<2,0	2		ISO 16703

Polychlorobiphényles

Somme 6 PCB	mg/kg Ms	0,0030 x)			NEN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	0,0030 ^{x)}			NEN-EN 16167
PCB (28)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
PCB (52)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
PCB (101)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
PCB (118)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
PCB (138)	mg/kg Ms	0,002	0,001	+/- 30	NEN-EN 16167
PCB (153)	mg/kg Ms	0,001	0,001	+/- 22	NEN-EN 16167
PCB (180)	mg/kg Ms	<0,001	0,001		NEN-EN 16167

Analyses sur éluat après lixiviation

symbole " ')						Date	20.06.2022
/mpc	RAPPORT D'ANALYSES					N° Client	3500495
	n° Cde	110	E024 A220E 242 E	DEI: 0	amblauv a	al.	
Ś			5 5024 A2205-313_E	PPLI_C	ombieux_s	OI	
Ď	N° échant.		368 Solide / Eluat				
Шa	Spécification des échantillons	S10) (0.05-1)				
seuls les parametres non accredites et/ou externalises sont		11.97	D (1)	Limite	Incert.	14 (4)	
Š		Unité	Résultat	Quant.	Résultat %	Méthode	
IIIS e	Trichloroéthylène	mg/kg Ms	0,36	0,05	+/- 16		ISO 22155
L	Tétrachloroéthylène	mg/kg Ms	0,14	0,05	+/- 21		ISO 22155
жtе	1,1,1-Trichloroéthane	mg/kg Ms	<0,05	0,05			ISO 22155
Σ	1,1,2-Trichloroéthane	mg/kg Ms	<0,05	0,05			ISO 22155
et/c	1,1-Dichloroéthane	mg/kg Ms	<0,10	0,1			ISO 22155
es	1,2-Dichloroéthane cis-1,2-Dichloroéthène	mg/kg Ms mg/kg Ms	<0,05 <0,025	0,05 0,025			ISO 22155 ISO 22155
edii	1,1-Dichloroéthylène	mg/kg Ms	<0,025	0,025			ISO 22155
ပ်	Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,10	0,025			ISO 22155
¤ □	Somme cis/trans-1,2-Dichloroéthylènes	mg/kg Ms	n.d.	0,023			ISO 22155
2		ingrig in	ii.u.				100 22 100
rres	Hydrocarbures totaux (ISO)	mg/kg Ms	-0.20	0.2		conform	e à NEN-EN-ISO 16558-1
me:	Fraction aliphatique C5-C6 Fraction C5-C10	mg/kg Ms	<0,20 <1,0 ×)	0,2 1			e à NEN-EN-ISO 16558-1
ara	Fraction >C6-C8	mg/kg Ms	<0,40 ×)	0,4			e à NEN-EN-ISO 16558-1
Ω S	Fraction C8-C10	mg/kg Ms	<0,40 ×)	0,4			e à NEN-EN-ISO 16558-1
<u>е</u>	Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	0,4			e à NEN-EN-ISO 16558-1
eni	Fraction aromatique >C6-C8	mg/kg Ms	<0,20	0,2			e à NEN-EN-ISO 16558-1
χ.	Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	0,2		conform	e à NEN-EN-ISO 16558-1
5	Fraction aromatique >C8-C10	mg/kg Ms	<0,20	0,2		conform	e à NEN-EN-ISO 16558-1
1/025:201/.	Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	20			ISO 16703
Š	Fraction C10-C12	*) mg/kg Ms	<4,0	4			ISO 16703
	Fraction C12-C16	*) mg/kg Ms	<4,0	4			ISO 16703
SO/IEC	Fraction C16-C20	*) mg/kg Ms	<2,0	2			ISO 16703
Š	Fraction C20-C24	*) mg/kg Ms	<2,0	2			ISO 16703
_	Fraction C24-C28	*) mg/kg Ms	<2,0	2			ISO 16703
П Ф	Fraction C28-C32	*) mg/kg Ms	2,2	2	+/- 21		ISO 16703
	Fraction C32-C36	*) mg/kg Ms	<2,0	2			ISO 16703
_	Fraction C36-C40	*) mg/kg Ms	<2,0	2			ISO 16703
	Polychlorobiphényles						
sont accredites selo	Somme 6 PCB	mg/kg Ms	0,0030 x)				IEN-EN 16167
တ္သ	Somme 7 PCB (Ballschmiter)	mg/kg Ms	0,0030 x)				IEN-EN 16167
ğ	PCB (28)	mg/kg Ms	<0,001	0,001			IEN-EN 16167
cre	PCB (52)	mg/kg Ms	<0,001	0,001			IEN-EN 16167
i a	PCB (101)	mg/kg Ms	<0,001	0,001			IEN-EN 16167
ő	PCB (118)	mg/kg Ms	<0,001	0,001	1/ 20		IEN-EN 16167
	PCB (138) PCB (153)	mg/kg Ms mg/kg Ms	0,002 0,001	0,001 0,001	+/- 30 +/- 22		IEN-EN 16167 IEN-EN 16167
St	PCB (180)	mg/kg Ms	<0,001	0,001	+/- 22		IEN-EN 16167
e ⊗			\0,00 1	0,001			ILIN-LIN TOTO!
۲	Analyses sur éluat après lixiv		40.0	0.4		Cal	a a a a a a a a a a a a a a a a a a a
ä	L/S cumulé	ml/g	10,0	0,1	./ 10		on norme lixiviation
S D	Conductivité électrique pH	μS/cm	100 9,1	<u>5</u> 0	+/- 10 +/- 5		on norme lixiviation on norme lixiviation
IISE	рп Température	°C	20,2	0	+/- ט		on norme lixiviation
eg B	•		20,2	U		Jeit	m norme iixivialiUII
. =	Analyses Physico-chimiques		465	400		Fa	ont à NE EN 190 45040
es	Résidu à sec	mg/l	<100	100	. / 40		lent à NF EN ISO 15216 à à ISO 10359-1, conform
netres	Fluoruros (E)	mac/l	n -				
Les parametres realises par AL-West BV	Fluorures (F) Indice phénol	mg/l mg/l	0,5 <0,010	0,1	+/- 10		à EN 16192 IEN-EN 16192

Analyses Physico-chimiques sur éluat

١١.						
5	Résidu à sec	mg/l	<100	100		Equivalent à NF EN ISO 15216
g	Fluorures (F)	mg/l	0,5	0,1	+/- 10	Conforme à ISO 10359-1, conforme à EN 16192
5	Indice phénol	ma/l	<0.010	0.01		NEN-EN 16192

RvA L 005

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 20.06.2022 N° Client 35004955

RAPPORT D'ANALYSES

ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du symbole " *) ".

accrédités selon la norme

paramètres réalisés par AL-West BV sont

n° Cde 1165024 A2205-313_EPFLi_Combleux_sol

N° échant. 365368 Solide / Eluat

Spécification des échantillons S10 (0.05-1)

	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Chlorures (CI)	mg/l	4,0	0,1	+/- 10	Conforme à ISO 15923-1
Sulfates (SO4)	mg/l	7,1	5	+/- 10	Conforme à ISO 15923-1
COT	mg/l	3,3	1	+/- 10	conforme EN 16192
Métaux sur éluat					
Antimoine (Sb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Arsenic (As)	μg/l	6,9	5	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Baryum (Ba)	μg/l	<10	10		Conforme à EN-ISO 17294-2 (2004)
Cadmium (Cd)	μg/l	<0,1	0,1		Conforme à EN-ISO 17294-2 (2004)
Chrome (Cr)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)
Cuivre (Cu)	μg/l	7,6	2	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Mercure	µg/l	° 0,07	0,03	+/- 20	méthode interne (conforme NEN- EN-ISO 12846)
Molybdène (Mo)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Nickel (Ni)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Plomb (Pb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Sélénium (Se)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Zinc (Zn)	µg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé.

Le calcul de l' incertitude de mesure analytique combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l' expression de l' incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordtest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d' élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance).

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Début des analyses: 10.06.2022 Fin des analyses: 17.06.2022

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

(Shy)

AL-West B.V. Mme Fatima-Zahra Saati, Tel. 33/380680132 Chargée relation clientèle

accrédités et/ou externalisés sont marqués du symbole " *) ".

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

ENVISOL 2-4, rue Hector Berlioz 38110 LA TOUR DU PIN **FRANCE**

> Date 20.06.2022 N° Client 35004955

RAPPORT D'ANALYSES

n° Cde 1165024 A2205-313_EPFLi_Combleux_sol

N° échant. 365369 Solide / Eluat

Date de validation 10.06.2022 Prélèvement 07.06.2022 Prélèvement par: Client Spécification des échantillons S10 (4-5)

opcomodici doc conditimono	•	U (. U)				
	Unité		Résultat	Limite Quant.	Incert. Résultat %	Méthode
Lixiviation						
Fraction >4mm (EN12457-2)	%	0	1,0	0,1		Selon norme lixiviation
Masse brute Mh pour lixiviation	*) g	•	100	1		Selon norme lixiviation
Lixiviation (EN 12457-2)		0				NF EN 12457-2
Volume de lixiviant L ajouté pour l'extraction	*) ml		900	1		Selon norme lixiviation
Prétraitement des échantillon	S					
Masse échantillon total inférieure à 2 kg	kg	•	0,66	0		
Prétraitement de l'échantillon		0				Conforme à NEN-EN 16179
Matière sèche	%	0	87,3	0,01	+/- 1	NEN-EN 15934 ; EN12880
Calcul des Fractions solubles	·					
Fraction soluble cumulé (var. L/S)	*) mg/kg Ms		0 - 1000	1000		Selon norme lixiviation
Antimoine cumulé (var. L/S)	*) mg/kg Ms		0 - 0,05	0,05		Selon norme lixiviation
Arsenic cumulé (var. L/S)	*) mg/kg Ms		0 - 0,05	0,05		Selon norme lixiviation
Barvum cumulé (var. L/S)	*) ma/ka Ms		0.12	0.1		Selon norme lixiviation

-	Antimoine cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
Ī	Arsenic cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
Ĕ	Baryum cumulé (var. L/S)	mg/kg Ms	0,12	0,1	Selon norme lixiviation
2	Cadmium cumulé (var. L/S)	mg/kg Ms	0,001	0,001	Selon norme lixiviation
<u>a</u>	Chlorures cumulé (var. L/S)	mg/kg Ms	42	1	Selon norme lixiviation
0	Chrome cumulé (var. L/S)	mg/kg Ms	0 - 0,02	0,02	Selon norme lixiviation
S	COT cumulé (var. L/S)	mg/kg Ms	22	10	Selon norme lixiviation
es	Cuivre cumulé (var. L/S)	mg/kg Ms	0,03	0,02	Selon norme lixiviation
e	Fluorures cumulé (var. L/S) *)	mg/kg Ms	3,0	1	Selon norme lixiviation
$\frac{1}{2}$	Indice phénol cumulé (var. L/S) *)	mg/kg Ms	0 - 0,1	0,1	Selon norme lixiviation
Ë	Mercure cumulé (var. L/S)	mg/kg Ms	0 - 0,0003	0,0003	Selon norme lixiviation
S	Molybdène cumulé (var. L/S)	mg/kg Ms	0,07	0,05	Selon norme lixiviation
2	Nickel cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
Sc	Plomb cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
Š	Sélénium cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
Ļ	Sulfates cumulé (var. L/S)	mg/kg Ms	94	50	Selon norme lixiviation
ä	Zinc cumulé (var. L/S)	mg/kg Ms	0 - 0,02	0,02	Selon norme lixiviation
$^{\circ}$					

				Limite	Incert.
	Unité		Résultat	Quant.	Résultat %
_ixiviation					
Fraction >4mm (EN12457-2)	%	۰	1,0	0,1	
Masse brute Mh pour lixiviation	*) g	۰	100	1	
ixiviation (EN 12457-2)		•			
/olume de lixiviant L ajouté pour l'extraction	*) ml		900	11	
Prétraitement des échantillon	s				
Masse échantillon total inférieure à 2 kg	kg	•	0,66	0	
Prétraitement de l'échantillon		۰	·		
Matière sèche	%	0	87,3	0,01	+/- 1
Calcul des Fractions solubles	1				
raction soluble cumulé (var. L/S)	*) mg/kg Ms		0 - 1000	1000	
Antimoine cumulé (var. L/S)	*) mg/kg Ms		0 - 0,05	0,05	
	*) mg/kg Ms		0 - 0,05	0,05	
, ,	*) mg/kg Ms		0,12	0,1	
Cadmium cumulė (var. L/S)	*) mg/kg Ms		0,001	0,001	
Chlorures cumulé (var. L/S)	*) mg/kg Ms		42	1	
Chrome cumulé (var. L/S)	*) mg/kg Ms		0 - 0,02	0,02	
COT cumulé (var. L/S)	*) mg/kg Ms		22	10	
Cuivre cumulé (var. L/S)	*) mg/kg Ms		0,03	0,02	
Fluorures cumulé (var. L/S)	*) mg/kg Ms		3,0	1	
ndice phénol cumulé (var. L/S)	*) mg/kg Ms		0 - 0,1	0,1	
Mercure cumulé (var. L/S)	*) mg/kg Ms		0 - 0,0003	0,0003	
Molybdène cumulé (var. L/S)	*) mg/kg Ms		0,07	0,05	
Nickel cumulé (var. L/S)	*) mg/kg Ms		0 - 0,05	0,05	
Plomb cumulé (var. L/S)	*) mg/kg Ms		0 - 0,05	0,05	
Sélénium cumulé (var. L/S)	*) mg/kg Ms		0 - 0,05	0,05	
Sulfates cumulé (var. L/S)	*) mg/kg Ms		94	50	
Zinc cumulé (var. L/S)	*) mg/kg Ms		0 - 0,02	0,02	
Analyses Physico-chimiques					
DH-H2O		•	8,6	0,1	+/- 10
COT Carbone Organique Total	mg/kg Ms		6900	1000	+/- 16
Prétraitement pour analyses o	des métaux	ζ			
Minéralisation à l'eau régale		0			

COT On the serious Testel	₹ PH-H2O		8,0	0,1	+/- 10	uniquement)
COT Carbone Organique Total mg/kg Ms 6900 1000 +/- 16 conforme ISO 10694 (COT Carbone Organique Total	mg/kg Ms	6900	1000	+/- 16	conforme ISO 10694 (2008)

NF-EN 16174; NF EN 13657 Minéralisation à l'eau régale (déchets)

> page 1 de 4 **RvA** L 005

Of NEN ISO 10200 (col

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

	(/				
	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Métaux					
Arsenic (As)	mg/kg Ms	14	1	+/- 15	Conforme à EN-ISO 11885, EN 16174
Cadmium (Cd)	mg/kg Ms	<0,1	0,1		Conforme à EN-ISO 11885, EN 16174
Chrome (Cr)	mg/kg Ms	26	0,2	+/- 12	Conforme à EN-ISO 11885, EN 16174
Cuivre (Cu)	mg/kg Ms	10	0,2	+/- 20	Conforme à EN-ISO 11885, EN 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conforme à ISO 16772 et EN 16174
Nickel (Ni)	mg/kg Ms	17	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Plomb (Pb)	mg/kg Ms	17	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Zinc (Zn)	mg/kg Ms	46	1	+/- 22	Conforme à EN-ISO 11885, EN 16174
Hydrocarbures Aromatiques	Polycycliques (ISO)			
Naphtalène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Acénaphtylène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Acénaphtène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181

					Date	20.06.20
					N° Client	350049
RAPPORT D'ANALYSES						
n° Cde	116502	4 A2205-313_E	EPFLi_C	combleux_so	ol	
N° échant.	365369	Solide / Eluat				
Spécification des échantillons	S10 (4-	5)				
•	•	,	Limite	Incert.		
	Unité	Résultat	Quant.	Résultat %	Méthode	
Métaux						
Arsenic (As)	mg/kg Ms	14	1	+/- 15	Conform	e à EN-ISO 11885, E 16174
Cadmium (Cd)	mg/kg Ms	<0,1	0,1		Conforme	e à EN-ISO 11885, E
Chrome (Cr)	mg/kg Ms	26	0,2	+/- 12	Conforme	16174 e à EN-ISO 11885, E
, ,						16174
Cuivre (Cu)	mg/kg Ms	10	0,2	+/- 20	Conform	e à EN-ISO 11885, E 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conform	ne à ISO 16772 et EN 16174
Nickel (Ni)	mg/kg Ms	17	0,5	+/- 11	Conform	e à EN-ISO 11885, E
Plomb (Pb)	mg/kg Ms	17		+/- 11	Conform	16174 e à EN-ISO 11885, E
` '			0,5			16174
Zinc (Zn)	mg/kg Ms	46	1	+/- 22	Conform	e à EN-ISO 11885, E 16174
Hydrocarbures Aromatiques I	Polycycliques (I	SO)				
Naphtalène	mg/kg Ms	<0,050	0,05		éguiva	ent à NF EN 1618
Acénaphtylène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Acénaphtène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Fluorène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Phénanthrène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Anthracène	mg/kg Ms	<0,050	0,05		éguival	ent à NF EN 1618
Fluoranthène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Pyrène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Benzo(a)anthracène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Chrysène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Benzo(b)fluoranthène	mg/kg Ms	<0,050	0,05		· ·	ent à NF EN 1618
Benzo(k)fluoranthène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Benzo(a)pyrène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
HAP (6 Borneff) - somme	mg/kg Ms	n.d.	0,00			ent à NF EN 1618
Somme HAP (VROM)	mg/kg Ms	n.d.				ent à NF EN 1618
HAP (EPA) - somme	mg/kg Ms	n.d.				ent à NF EN 1618
•	IIIg/kg IVIS	n.u.			equiva	entani Liv 1010
Composés aromatiques					<u> </u>	
Benzène	mg/kg Ms	<0,050	0,05			ISO 22155
Toluène	mg/kg Ms	<0,050	0,05			ISO 22155
Ethylbenzène	mg/kg Ms	<0,050	0,05			ISO 22155
m,p-Xylène	mg/kg Ms	<0,10	0,1			ISO 22155
o-Xylène	mg/kg Ms	<0,050	0,05			ISO 22155
Naphtalène	mg/kg Ms	<0,10	0,1			ISO 22155
Somme Xylènes	mg/kg Ms	n.d.				ISO 22155
BTEX total	*) mg/kg Ms	n.d.				ISO 22155
COHV						
Chlorure de Vinyle	mg/kg Ms	<0,02	0,02			ISO 22155
Dichlorométhane	mg/kg Ms	<0,05	0,05			ISO 22155
Trichlorométhane	mg/kg Ms	<0,05	0,05			ISO 22155
Tétrachlorométhane	mg/kg Ms	<0,05	0,05			ISO 22155

_	,		
Com	nnses	aron	natiques

Composés aromatiques				
Benzène	mg/kg Ms	<0,050	0,05	ISO 22155
Toluène	mg/kg Ms	<0,050	0,05	ISO 22155
Ethylbenzène	mg/kg Ms	<0,050	0,05	ISO 22155
m,p-Xylène	mg/kg Ms	<0,10	0,1	ISO 22155
o-Xylène	mg/kg Ms	<0,050	0,05	ISO 22155
Naphtalène	mg/kg Ms	<0,10	0,1	ISO 22155
Somme Xylènes	mg/kg Ms	n.d.		ISO 22155
BTEX total	mg/kg Ms	n.d.		ISO 22155

COHV

ĸ	00.11				
_	Chlorure de Vinyle	mg/kg Ms	<0,02	0,02	ISO 22155
ב ב	Dichlorométhane	mg/kg Ms	<0,05	0,05	ISO 22155
=	Trichlorométhane	mg/kg Ms	<0,05	0,05	ISO 22155
ם ם	Tétrachlorométhane	mg/kg Ms	<0,05	0,05	ISO 22155

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

RAPPORT D'ANALYSES

	1.1-24.4	Dánultat	Limite	Incert.	
0	Unité	Résultat	Quant.	Résultat %	Méthode
Trichloroéthylène	mg/kg Ms	<0,05	0,05		ISO 22155
Tétrachloroéthylène	mg/kg Ms	<0,05	0,05		ISO 22155
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
1,1,2-Trichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
1,1-Dichloroéthane	mg/kg Ms	<0,10	0,1		ISO 22155
1,2-Dichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	0,025		ISO 22155
1,1-Dichloroéthylène	mg/kg Ms	<0,10	0,1		ISO 22155
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	0,025		ISO 22155
Somme cis/trans-1,2-Dichloroéthylènes	mg/kg Ms	n.d.			ISO 22155

Hvdrocarbures totaux (ISO)	Н١	vdrod	arbures	totaux	(ISO)
----------------------------	----	-------	---------	--------	-------

Ś	riyurocarbur e s totaux (130)					
Ś	Fraction aliphatique C5-C6	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
3	Fraction C5-C10	mg/kg Ms	<1,0 ^{x)}	1		conforme à NEN-EN-ISO 16558-1
5	Fraction >C6-C8	mg/kg Ms	<0,40 x)	0,4		conforme à NEN-EN-ISO 16558-1
3	Fraction C8-C10	mg/kg Ms	<0,40 ×)	0,4		conforme à NEN-EN-ISO 16558-1
2	Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
2	Fraction aromatique >C6-C8	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
	Fraction aliphatique >C8-C10	mg/kg Ms	0,23	0,2	+/- 20	conforme à NEN-EN-ISO 16558-1
5	Fraction aromatique >C8-C10	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
	Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	20		ISO 16703
7	Fraction C10-C12	mg/kg Ms	<4,0	4		ISO 16703
-	Fraction C12-C16	mg/kg Ms	<4,0	4		ISO 16703
í	Fraction C16-C20	mg/kg Ms	<2,0	2		ISO 16703
Ò	Fraction C20-C24	mg/kg Ms	<2,0	2		ISO 16703
•	Fraction C24-C28	mg/kg Ms	<2,0	2		ISO 16703
ī	Fraction C28-C32	mg/kg Ms	<2,0	2		ISO 16703
2	Fraction C32-C36	mg/kg Ms	<2,0	2		ISO 16703
5	Fraction C36-C40	mg/kg Ms	<2,0	2		ISO 16703

Polychlorobiphényles

Somme 6 PCB	mg/kg Ms	n.d.		NEN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.		NEN-EN 16167
PCB (28)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB (52)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB (101)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB (118)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB (138)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB (153)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB (180)	mg/kg Ms	<0,001	0,001	NEN-EN 16167

Analyses sur éluat après lixiviation

					Date	20.06.202
DADDORT BIANAL VOCA					N° Client	3500495
RAPPORT D'ANALYSES	440500	4 40005 040 5			-1	
n° Cde		4 A2205-313_E	PFLI_C	ombieux_s	Ol	
N° échant.		Solide / Eluat				
Spécification des échantillons	S10 (4-	5)				
	11.37	District	Limite	Incert.	NA Colorada	
	Unité	Résultat	Quant.	Résultat %	Méthode	
Trichloroéthylène	mg/kg Ms	<0,05	0,05			ISO 22155
Tétrachloroéthylène	mg/kg Ms	<0,05	0,05			ISO 22155
1,1,1-Trichloroéthane 1,1,2-Trichloroéthane	mg/kg Ms mg/kg Ms	<0,05	0,05			ISO 22155 ISO 22155
1,1-Dichloroéthane	mg/kg Ms	<0,05 <0,10	0,05 0,1			ISO 22155
1,2-Dichloroéthane	mg/kg Ms	<0,10	0,05			ISO 22155
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	0,025			ISO 22155
1,1-Dichloroéthylène	mg/kg Ms	<0,10	0,1			ISO 22155
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	0,025			ISO 22155
Somme cis/trans-1,2-Dichloroéthylènes	mg/kg Ms	n.d.	,			ISO 22155
Hydrocarbures totaux (ISO)						
Fraction aliphatique C5-C6	mg/kg Ms	<0,20	0,2		conforme	à NEN-EN-ISO 16558-
Fraction C5-C10	mg/kg Ms	<1,0 x)	1		conforme	à NEN-EN-ISO 16558-
Fraction >C6-C8	mg/kg Ms	<0,40 x)	0,4		conforme	à NEN-EN-ISO 16558-
Fraction C8-C10	mg/kg Ms	<0,40 x)	0,4			à NEN-EN-ISO 16558-
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	0,2			à NEN-EN-ISO 16558-
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	0,2			à NEN-EN-ISO 16558-
Fraction aliphatique >C8-C10	mg/kg Ms	0,23	0,2	+/- 20		à NEN-EN-ISO 16558-
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	0,2		conforme	à NEN-EN-ISO 16558-
Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	20			ISO 16703
Fraction C10-C12	ilig/kg ivio	<4,0	4			ISO 16703
Fraction C12-C16	*) mg/kg Ms *) mg/kg Ms	<4,0	2			ISO 16703
Fraction C16-C20 Fraction C20-C24	*) mg/kg Ms	<2,0 <2,0	2			ISO 16703 ISO 16703
Fraction C24-C28	*) mg/kg Ms	<2,0 <2,0	2			ISO 16703
Fraction C28-C32	*) mg/kg Ms	<2,0	2			ISO 16703
Fraction C32-C36	*) mg/kg Ms	<2,0	2			ISO 16703
Fraction C36-C40	*) mg/kg Ms	<2,0	2			ISO 16703
Polychlorobiphényles		,-				
Somme 6 PCB	mg/kg Ms	n.d.			N	EN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.			<u> </u>	EN-EN 16167
PCB (28)	mg/kg Ms	<0,001	0,001			EN-EN 16167
PCB (52)	mg/kg Ms	<0,001	0,001			EN-EN 16167
PCB (101)	mg/kg Ms	<0,001	0,001			EN-EN 16167
PCB (118)	mg/kg Ms	<0,001	0,001		N	EN-EN 16167
PCB (138)	mg/kg Ms	<0,001	0,001			EN-EN 16167
PCB (153)	mg/kg Ms	<0,001	0,001			EN-EN 16167
PCB (180)	mg/kg Ms	<0,001	0,001		N	EN-EN 16167
Analyses sur éluat après lixiv	viation .					
L/S cumulé	ml/g	10,0	0,1		Selo	n norme lixiviation
Conductivité électrique	μS/cm	120	5	+/- 10		n norme lixiviation
рН		8,5	0	+/- 5		n norme lixiviation
Température	°C	19,9	0		Selo	n norme lixiviation
Analyses Physico-chimiques	sur éluat					
Résidu à sec	mg/l	<100	100			ent à NF EN ISO 15216
Fluorures (F)	mg/l	0,3	0,1	+/- 10	Conforme	à ISO 10359-1, conform
						à EN 16192

Analyses Physico-chimiques sur éluat

ppa. Marc van Gelder Dr. Paul Wimmer

5	Résidu à sec	mg/l	<100	100		Equivalent à NF EN ISO 15216
<u> </u>	Fluorures (F)	mg/l	0,3	0,1	+/- 10	Conforme à ISO 10359-1, conforme à EN 16192
5	Indice phénol	ma/l	<0.010	0.01		NEN-EN 16192

page 3 de 4 **RvA** L 005

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 20.06.2022 N° Client 35004955

RAPPORT D'ANALYSES

ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du symbole " *) ".

accrédités selon la norme

paramètres réalisés par AL-West BV sont

n° Cde 1165024 A2205-313_EPFLi_Combleux_sol

N° échant. 365369 Solide / Eluat

Spécification des échantillons S10 (4-5)

	Unité	Résultat	Limite Quant.	ncert. Résultat %	Méthode
Chlorures (CI)	mg/l	4,2	0,1	+/- 10	Conforme à ISO 15923-1
Sulfates (SO4)	mg/l	9,4	5	+/- 10	Conforme à ISO 15923-1
СОТ	mg/l	2,2	1	+/- 10	conforme EN 16192
Métaux sur éluat					
Antimoine (Sb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Arsenic (As)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Baryum (Ba)	μg/l	12	10	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Cadmium (Cd)	μg/l	0,1	0,1	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Chrome (Cr)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)
Cuivre (Cu)	μg/l	3,0	2	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Mercure	μg/l	° <0,03	0,03		méthode interne (conforme NEN- EN-ISO 12846)
Molybdène (Mo)	μg/l	7,0	5	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Nickel (Ni)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Plomb (Pb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Sélénium (Se)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Zinc (Zn)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)

Limita

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé.

Le calcul de l' incertitude de mesure analytique combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l' expression de l' incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordtest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d' élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance).

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Début des analyses: 10.06.2022 Fin des analyses: 17.06.2022

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

(Shy)

AL-West B.V. Mme Fatima-Zahra Saati, Tel. 33/380680132 Chargée relation clientèle

et/ou externalisés sont marqués du symbole " *) ".

Seuls les paramètres non

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

ENVISOL 2-4, rue Hector Berlioz 38110 LA TOUR DU PIN **FRANCE**

> 20.06.2022 Date N° Client 35004955

RAPPORT D'ANALYSES

n° Cde 1165024 A2205-313_EPFLi_Combleux_sol

Lloitá

N° échant. 365370 Solide / Eluat

Date de validation 10.06.2022 Prélèvement 07.06.2022 Prélèvement par: Client Spécification des échantillons S1 (0-1)

		Unite		Resultat	Quant.	Resultat %	Methode
	Lixiviation						
Ĺ	Fraction >4mm (EN12457-2)	%	•	11,7	0,1		Selon norme lixiviation
	Masse brute Mh pour lixiviation *)	g	•	110	1		Selon norme lixiviation
	Lixiviation (EN 12457-2)		0				NF EN 12457-2
	Volume de lixiviant L ajouté pour l'extraction *)	ml		900	1		Selon norme lixiviation

Limite

Incert.

Prétraitement des échantillons

Masse échantillon total inférieure à 2 kg	kg	•	0,60	0		
Prétraitement de l'échantillon	-	۰				Conforme à NEN-EN 16179
Broyeur à mâchoires		•				méthode interne
Matière sèche	%	۰	83,7	0,01	+/- 1	NEN-EN 15934 ; EN12880

Calcul des Fractions solubles

Fraction soluble cumulé (var. L/S)	mg/kg Ms	1300	1000	Selon norme lixiviation
Antimoine cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
Arsenic cumulé (var. L/S)	mg/kg Ms	0,11	0,05	Selon norme lixiviation
Baryum cumulé (var. L/S)	mg/kg Ms	0 - 0,1	0,1	Selon norme lixiviation
Cadmium cumulé (var. L/S)	mg/kg Ms	0 - 0,001	0,001	Selon norme lixiviation
Chlorures cumulé (var. L/S)	mg/kg Ms	9,0	1	Selon norme lixiviation
Chrome cumulé (var. L/S)	mg/kg Ms	0 - 0,02	0,02	Selon norme lixiviation
COT cumulé (var. L/S)	mg/kg Ms	27	10	Selon norme lixiviation
Cuivre cumulé (var. L/S)	mg/kg Ms	0,03	0,02	Selon norme lixiviation
Fluorures cumulé (var. L/S)	mg/kg Ms	7,0	1	Selon norme lixiviation
Indice phénol cumulé (var. L/S)	mg/kg Ms	0 - 0,1	0,1	Selon norme lixiviation
Mercure cumulé (var. L/S)	mg/kg Ms	0,0004	0,0003	Selon norme lixiviation
Molybdène cumulé (var. L/S)	mg/kg Ms	0,09	0,05	Selon norme lixiviation
Nickel cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
Plomb cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
Sélénium cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
Sulfates cumulé (var. L/S)	mg/kg Ms	260	50	Selon norme lixiviation
Zinc cumulé (var. L/S)	mg/kg Ms	0,02	0,02	Selon norme lixiviation

Analyses Physico-chimiques

Prétraitement des échantille					
	ons				
Masse échantillon total inférieure à 2 kg	kg	° 0,60	0		
Prétraitement de l'échantillon		•			Conforme à NEN-EN 1617
Broyeur à mâchoires		0			méthode interne
Matière sèche	%	° 83,7	0,01	+/- 1	NEN-EN 15934 ; EN128
Calcul des Fractions soluble	es				
Fraction soluble cumulé (var. L/S)	*) mg/kg Ms	1300	1000		Selon norme lixiviation
Antimoine cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Arsenic cumulé (var. L/S)	*) mg/kg Ms	0,11	0,05		Selon norme lixiviation
Baryum cumulé (var. L/S)	*) mg/kg Ms	0 - 0,1	0,1		Selon norme lixiviation
Cadmium cumulé (var. L/S)	*) mg/kg Ms	0 - 0,001	0,001		Selon norme lixiviation
Chlorures cumulé (var. L/S)	*) mg/kg Ms	9,0	1		Selon norme lixiviation
Chrome cumulé (var. L/S)	*) mg/kg Ms	0 - 0,02	0,02		Selon norme lixiviation
COT cumulé (var. L/S)	*) mg/kg Ms	27	10		Selon norme lixiviation
Cuivre cumulé (var. L/S)	*) mg/kg Ms	0,03	0,02		Selon norme lixiviation
Fluorures cumulé (var. L/S)	*) mg/kg Ms	7,0	1		Selon norme lixiviation
Indice phénol cumulé (var. L/S)	*) mg/kg Ms	0 - 0,1	0,1		Selon norme lixiviation
Mercure cumulé (var. L/S)	*) mg/kg Ms	0,0004	0,0003		Selon norme lixiviation
Molybdène cumulé (var. L/S)	*) mg/kg Ms	0,09	0,05		Selon norme lixiviation
Nickel cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Plomb cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Sélénium cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Sulfates cumulé (var. L/S)	*) mg/kg Ms	260	50		Selon norme lixiviation
Zinc cumulé (var. L/S)	*) mg/kg Ms	0,02	0,02		Selon norme lixiviation
Analyses Physico-chimique	es .				
pH-H2O		° 8,8	0,1	+/- 10	Cf. NEN-ISO 10390 (sol uniquement)
		6200	1000	+/- 16	conforme ISO 10694 (200

AL-West B.V.
Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Minéralisation à l'eau régale		0			NF-EN 16174; NF EN 13657 (déchets)
Métaux					
Arsenic (As)	mg/kg Ms	24	1	+/- 15	Conforme à EN-ISO 11885, EN 16174
Cadmium (Cd)	mg/kg Ms	0,2	0,1	+/- 21	Conforme à EN-ISO 11885, EN 16174
Chrome (Cr)	mg/kg Ms	47	0,2	+/- 12	Conforme à EN-ISO 11885, EN 16174
Cuivre (Cu)	mg/kg Ms	15	0,2	+/- 20	Conforme à EN-ISO 11885, EN 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conforme à ISO 16772 et EN 16174
Nickel (Ni)	mg/kg Ms	27	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Plomb (Pb)	mg/kg Ms	48	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Zinc (Zn)	mg/kg Ms	80	1	+/- 22	Conforme à EN-ISO 11885, EN 16174

Hvdrocarl	oures Aromati	aues Polvc	vcliaues ((ISO)

Tiyarocarbarca Aromanque	3 i orycychiques (i	00)		
Naphtalène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Acénaphtylène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Acénaphtène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Fluorène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Phénanthrène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Anthracène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Fluoranthène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Pyrène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Benzo(a)anthracène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Chrysène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Benzo(b)fluoranthène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Benzo(k)fluoranthène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Benzo(a)pyrène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
HAP (6 Borneff) - somme	mg/kg Ms	n.d.		équivalent à NF EN 16181
Somme HAP (VROM)	mg/kg Ms	n.d.		équivalent à NF EN 16181
HAP (EPA) - somme	mg/kg Ms	n.d.		équivalent à NF EN 16181
Composés aremetiques		· · · · · · · · · · · · · · · · · · ·	·	

					Date N° Client	20.06.20 350049
RAPPORT D'ANALYSES						
n° Cde	116502	4 A2205-313_I	EPFLi_C	combleux_sc	ol	
√N° échant.	365370	Solide / Eluat				
Spécification des échantillons	S1 (0-1					
opcomodion dec conditions	0. (0.)	,	Limite	Incert.		
	Unité	Résultat	Quant.	Résultat %	Méthode	
Minéralisation à l'eau régale	0				NF-EN	16174; NF EN 1365
						(déchets)
Métaux						
Arsenic (As)	mg/kg Ms	24	1	+/- 15	Conform	e à EN-ISO 11885, I 16174
Cadmium (Cd)	mg/kg Ms	0,2	0,1	+/- 21	Conform	e à EN-ISO 11885, I
Chrome (Cr)	mg/kg Ms	47	0,2	+/- 12	Conform	16174 e à EN-ISO 11885, I
· ·						16174
Cuivre (Cu)	mg/kg Ms	15	0,2	+/- 20	Conform	e à EN-ISO 11885, 1 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conforn	ne à ISO 16772 et E
Nickel (Ni)	mg/kg Ms	27	0,5	+/- 11	Conform	16174 e à EN-ISO 11885,
· ,						16174
Plomb (Pb)	mg/kg Ms	48	0,5	+/- 11	Conform	e à EN-ISO 11885, 16174
Zinc (Zn)	mg/kg Ms	80	1	+/- 22	Conform	e à EN-ISO 11885, I
		20)				16174
Hydrocarbures Aromatiques			0.05		£	Land S NIE EN 4040
Naphtalène A sá naphtalàna	mg/kg Ms mg/kg Ms	<0,050	0,05			ent à NF EN 1618 ent à NF EN 1618
Acénaphtylène Acénaphtène	mg/kg Ms	<0,050 <0,050	0,05 0,05			ent à NF EN 1618
Fluorène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Phénanthrène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Anthracène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Fluoranthène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Pyrène	mg/kg Ms	<0,050	0,05		équiva	ent à NF EN 1618
Benzo(a)anthracène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Chrysène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Benzo(b)fluoranthène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Benzo(k)fluoranthène	mg/kg Ms	<0,050	0,05	+		ent à NF EN 1618
Benzo(a)pyrène Dibenzo(a,h)anthracène	mg/kg Ms mg/kg Ms	<0,050 <0,050	0,05 0,05			ent à NF EN 1618 ent à NF EN 1618
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	0,05	+		ent à NF EN 1618
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	0,05	+		ent à NF EN 1618
HAP (6 Borneff) - somme	mg/kg Ms	n.d.	0,00			ent à NF EN 1618
Somme HAP (VROM)	mg/kg Ms	n.d.				ent à NF EN 1618
HAP (EPA) - somme	mg/kg Ms	n.d.			équiva	ent à NF EN 1618
Composés aromatiques						
Benzène	mg/kg Ms	<0,050	0,05			ISO 22155
Toluène	mg/kg Ms	<0,050	0,05			ISO 22155
Ethylbenzène	mg/kg Ms	<0,050	0,05			ISO 22155
m,p-Xylène	mg/kg Ms	<0,10	0,1			ISO 22155
o-Xylène	mg/kg Ms	<0,050	0,05			ISO 22155
Naphtalène Sommo Yulànos	mg/kg Ms mg/kg Ms	<0,10	0,1			ISO 22155
Somme Xylènes BTEX total	*) mg/kg Ms	n.d. n.d.				ISO 22155 ISO 22155
	ing/ng ivis	ii.u.				100 22 100
COHV	ma/ka Ma	.0.00	0.00			100 22455
Chlorure de Vinyle Dichlorométhane	mg/kg Ms mg/kg Ms	<0,02 <0,05	0,02 0,05	+		ISO 22155 ISO 22155

COHV

_	Chlorure de Vinyle	mg/kg Ms	<0,02	0,02	ISO 22155
	Dichlorométhane	mg/kg Ms	<0,05	0,05	ISO 22155

page 2 de 5 **RvA** L 005

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Specification des echantillons	S1 (0-1)				
			Limite	Incert.	
ń O	Unité	Résultat	Quant.	Résultat %	Méthode
Trichlorométhane	mg/kg Ms	<0,05	0,05		ISO 22155
Tétrachlorométhane	mg/kg Ms	<0,05	0,05		ISO 22155
Trichloroéthylène	mg/kg Ms	<0,05	0,05		ISO 22155
Tétrachloroéthylène	mg/kg Ms	<0,05	0,05		ISO 22155
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
1,1,2-Trichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
1,1-Dichloroéthane	mg/kg Ms	<0,10	0,1		ISO 22155
1,2-Dichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	0,025		ISO 22155
1,1-Dichloroéthylène	mg/kg Ms	<0,10	0,1		ISO 22155
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	0,025		ISO 22155
Somme cis/trans-1,2-Dichloroéthylènes	mg/kg Ms	n.d.			ISO 22155
Hydrocarbures totaux (ISO)					
Fraction aliphatique C5-C6	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Fraction C5-C10	mg/kg Ms	<1,0 ^{x)}	1		conforme à NEN-EN-ISO 16558-1
Fraction >C6-C8	mg/kg Ms	<0,40 ×)	0,4		conforme à NEN-EN-ISO 16558-1
Fraction C8-C10	mg/kg Ms	<0,40 ×)	0,4		conforme à NEN-EN-ISO 16558-1

nyurocarbures idiaux (130)					
Fraction aliphatique C5-C6	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Fraction C5-C10	mg/kg Ms	<1,0 ×)	1		conforme à NEN-EN-ISO 16558-1
Fraction >C6-C8	mg/kg Ms	<0,40 ×)	0,4		conforme à NEN-EN-ISO 16558-1
Fraction C8-C10	mg/kg Ms	<0,40 ×)	0,4		conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Hydrocarbures totaux C10-C40	mg/kg Ms	27,4	20	+/- 21	ISO 16703
Fraction C10-C12	mg/kg Ms	<4,0	4		ISO 16703
Fraction C12-C16	mg/kg Ms	<4,0	4		ISO 16703
Fraction C16-C20	mg/kg Ms	3,9	2	+/- 21	ISO 16703
Fraction C20-C24	mg/kg Ms	5,3	2	+/- 21	ISO 16703
Fraction C24-C28	mg/kg Ms	4,7	2	+/- 21	ISO 16703
Fraction C28-C32	mg/kg Ms	5,7	2	+/- 21	ISO 16703
Fraction C32-C36	mg/kg Ms	3,9	2	+/- 21	ISO 16703
Fraction C36-C40	mg/kg Ms	<2,0	2		ISO 16703

Poly	/chl	orol	hinh	énv	rles

Somme 6 PCB	mg/kg Ms	0,94 ×)		NEN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	0,95 ×)		NEN-EN 16167
PCB (28)	mg/kg Ms	<0,001 0,001		NEN-EN 16167
PCB (52)	mg/kg Ms	0,005 0,001	+/- 33	NEN-EN 16167
PCB (101)	mg/kg Ms	0,082 0,001	+/- 34	NEN-EN 16167
PCB (118)	mg/kg Ms	0,012 0,001	+/- 19	NEN-EN 16167
PCB (138)	mg/kg Ms	0,25 0,001	+/- 30	NEN-EN 16167
PCB (153)	mg/kg Ms	0,31 0,001	+/- 22	NEN-EN 16167
PCB (180)	mg/kg Ms	0.29 0.001	+/- 12	NEN-EN 16167

					Date N° Client	20.06.202 3500495
RAPPORT D'ANALYSES					TV OIICH	3300433
n° Cde	1165024 A	2205-313_E	PFLi_C	ombleux_s	ol	
N° échant.	365370 So	lide / Eluat				
Spécification des échantillons	S1 (0-1)					
	- (· ·)		Limite	Incert.		
	Unité	Résultat	Quant.	Résultat %	Méthode	
Trichlorométhane	mg/kg Ms	<0,05	0,05			ISO 22155
Tétrachlorométhane	mg/kg Ms	<0,05	0,05			ISO 22155
Trichloroéthylène	mg/kg Ms	<0,05	0,05			ISO 22155
Tétrachloroéthylène	mg/kg Ms	<0,05	0,05			ISO 22155
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	0,05			ISO 22155
1,1,2-Trichloroéthane	mg/kg Ms	<0,05	0,05			ISO 22155
1,1-Dichloroéthane	mg/kg Ms	<0,10	0,1			ISO 22155
1,2-Dichloroéthane	mg/kg Ms	<0,05	0,05			ISO 22155
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	0,025			ISO 22155
1,1-Dichloroéthylène Trans-1,2-Dichloroéthylène	mg/kg Ms mg/kg Ms	<0,10 <0,025	0,1 0,025			ISO 22155 ISO 22155
Somme cis/trans-1,2-Dichloroéthylènes	mg/kg Ms	<0,025 n.d.	0,025			ISO 22155
	mg/kg Ivis	n.u.				100 22 100
Hydrocarbures totaux (ISO)	mg/kg Ms	-0.00	0.0		conformo	à NEN-EN-ISO 16558-1
Fraction aliphatique C5-C6 Fraction C5-C10	mg/kg Ms	<0,20 <1,0 ×)	0,2 1			à NEN-EN-ISO 16558-
Fraction C5-C10 Fraction >C6-C8	mg/kg Ms	<0,40 ×)	0,4			à NEN-EN-ISO 16558-
Fraction Sco-Co Fraction C8-C10	mg/kg Ms	<0,40 ×)	0,4			à NEN-EN-ISO 16558-
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	0,4			à NEN-EN-ISO 16558-1
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	0,2		conforme	à NEN-EN-ISO 16558-
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	0,2		conforme	à NEN-EN-ISO 16558-
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	0,2		conforme	à NEN-EN-ISO 16558-1
Hydrocarbures totaux C10-C40	mg/kg Ms	27,4	20	+/- 21		ISO 16703
	*) mg/kg Ms	<4,0	4			ISO 16703
Fraction C12-C16	*) mg/kg Ms	<4,0	4			ISO 16703
Fraction C16-C20	*) mg/kg Ms	3,9	2	+/- 21		ISO 16703
Traction 020 02+	*) mg/kg Ms	5,3	2	+/- 21		ISO 16703
	*) mg/kg Ms	4,7	2	+/- 21		ISO 16703
	*) mg/kg Ms	5,7	2	+/- 21		ISO 16703
	*) mg/kg Ms	3,9	2	+/- 21		ISO 16703
Fraction C36-C40	*) mg/kg Ms	<2,0	2			ISO 16703
Polychlorobiphényles						
Somme 6 PCB	mg/kg Ms	0,94 ×)				EN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	0,95 x)				EN-EN 16167
PCB (28)	mg/kg Ms	<0,001	0,001			EN-EN 16167
PCB (52)	mg/kg Ms	0,005	0,001	+/- 33		EN-EN 16167
PCB (101)	mg/kg Ms	0,082	0,001	+/- 34		EN-EN 16167
PCB (118)	mg/kg Ms	0,012	0,001	+/- 19		EN-EN 16167
PCB (138)	mg/kg Ms mg/kg Ms	0,25	0,001	+/- 30		EN-EN 16167
PCB (153) PCB (180)	mg/kg Ms	0,31 0,29	0,001 0,001	+/- 22 +/- 12		EN-EN 16167 EN-EN 16167
		0,29	0,001	T/- 12	IN	ZIN-EIN TOTO!
Analyses sur éluat après lixiv				1		
L/S cumulé	ml/g	10,0	0,1	./ 40		n norme lixiviation
Conductivité électrique	μS/cm	140	5	+/- 10		n norme lixiviation
pH Température	°C	9,0 20,2	0	+/- 5		n norme lixiviation n norme lixiviation
Température		20,2	0		3610	THOUSE HAIVIGUOII
Analyses Physico-chimiques Résidu à sec	1 1	130			1	
	mg/l	420	100	+/- 22	Fauivale	ent à NF EN ISO 15216

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 20.06.2022 N° Client 35004955

RAPPORT D'ANALYSES

n° Cde 1165024 A2205-313_EPFLi_Combleux_sol

N° échant. 365370 Solide / Eluat

Spécification des échantillons S1 (0-1)

	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Fluorures (F)	mg/l	0,7	0,1	+/- 10	Conforme à ISO 10359-1, conforme à EN 16192
Indice phénol	mg/l	<0,010	0,01		NEN-EN 16192
Chlorures (CI)	mg/l	0,9	0,1	+/- 10	Conforme à ISO 15923-1
Sulfates (SO4)	mg/l	26	5	+/- 10	Conforme à ISO 15923-1
COT	mg/l	2,7	1	+/- 10	conforme EN 16192
Métaux sur éluat					

Métaux sur élua	ıt
-----------------	----

EN ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du symbole " *) ".

Métaux sur éluat					
Antimoine (Sb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Arsenic (As)	μg/l	11	5	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Baryum (Ba)	μg/l	<10	10		Conforme à EN-ISO 17294-2 (2004)
Cadmium (Cd)	μg/l	<0,1	0,1		Conforme à EN-ISO 17294-2 (2004)
Chrome (Cr)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)
Cuivre (Cu)	μg/l	2,8	2	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Mercure	μg/l	° 0,04	0,03	+/- 20	méthode interne (conforme NEN- EN-ISO 12846)
Molybdène (Mo)	μg/l	8,7	5	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Nickel (Ni)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Plomb (Pb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Sélénium (Se)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Zinc (Zn)	μg/l	2,0	2	+/- 10	Conforme à EN-ISO 17294-2 (2004)

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé. Le calcul de l' incertitude de mesure analytique combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l' expression de l' incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordtest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d' élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance).

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Début des analyses: 10.06.2022 Fin des analyses: 17.06.2022

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

la norme sont es paramètres réalisés par AL-West

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 20.06.2022 N° Client 35004955

RAPPORT D'ANALYSES

n° Cde 1165024 A2205-313_EPFLi_Combleux_sol

N° échant. 365370 Solide / Eluat

Spécification des échantillons S1 (0-1)

AL-West B.V. Mme Fatima-Zahra Saati, Tel. 33/380680132 Chargée relation clientèle

accrédités et/ou externalisés sont marqués du symbole " *) ".

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

ENVISOL 2-4, rue Hector Berlioz 38110 LA TOUR DU PIN **FRANCE**

> Date 20.06.2022 N° Client 35004955

RAPPORT D'ANALYSES

n° Cde 1165024 A2205-313_EPFLi_Combleux_sol

N° échant. 365371 Solide / Eluat

Date de validation 10.06.2022 Prélèvement 07.06.2022 Prélèvement par: Client Spécification des échantillons S2 (0-1)

	Unité		Résultat	Limite Quant.	Incert. Résultat %	Méthode
Lixiviation						
Fraction >4mm (EN12457-2)	%	•	1,2	0,1		Selon norme lixiviation
Masse brute Mh pour lixiviation *) g	۰	120	1		Selon norme lixiviation
Lixiviation (EN 12457-2)		۰				NF EN 12457-2
Volume de lixiviant L ajouté pour l'extraction *) ml		900	1		Selon norme lixiviation
Prétraitement des échantillons	3					
Masse échantillon total inférieure à 2 kg	kg	•	0,65	0		
Prétraitement de l'échantillon		۰				Conforme à NEN-EN 16179
Matière sèche	%	0	76,5	0,01	+/- 1	NEN-EN 15934 ; EN12880
Calcul des Fractions solubles						
Fraction soluble cumulé (var. L/S) *) ma/ka Ms		1500	1000		Selon norme lixiviation

Matiere seche	%	° 76,5	0,01	+/- 1	NEN-EN 15934 ; EN12880
Calcul des Fractions solubles					
Fraction soluble cumulé (var. L/S) *)	mg/kg Ms	1500	1000		Selon norme lixiviation
Antimoine cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Arsenic cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Baryum cumulé (var. L/S)	mg/kg Ms	0,30	0,1		Selon norme lixiviation
Cadmium cumulé (var. L/S)	mg/kg Ms	0 - 0,001	0,001		Selon norme lixiviation
Chlorures cumulé (var. L/S)	mg/kg Ms	8,0	1		Selon norme lixiviation
Chrome cumulé (var. L/S)	mg/kg Ms	0 - 0,02	0,02		Selon norme lixiviation
COT cumulé (var. L/S)	mg/kg Ms	25	10		Selon norme lixiviation
Cuivre cumulé (var. L/S)	mg/kg Ms	0 - 0,02	0,02		Selon norme lixiviation
Fluorures cumulé (var. L/S)	mg/kg Ms	6,0	1		Selon norme lixiviation
Indice phénol cumulé (var. L/S)	mg/kg Ms	0 - 0,1	0,1		Selon norme lixiviation
Mercure cumulé (var. L/S)	mg/kg Ms	0 - 0,0003	0,0003		Selon norme lixiviation
Molybdène cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Nickel cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Plomb cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Sélénium cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Sulfates cumulé (var. L/S)	mg/kg Ms	450	50		Selon norme lixiviation
Zinc cumulé (var. L/S)	mg/kg Ms	0 - 0,02	0,02		Selon norme lixiviation

מַּ	Analyses Physico-chimiques						
משוני	pH-H2O		0	8,2	0,1	+/- 10	Cf. NEN-ISO 10390 (sol uniquement)
-	COT Carbone Organique Total	ma/ka Ms		10000	1000	⊥/ ₋ 16	conforma ISO 10694 (2008)

Prétraitement	nour	analyses	des	métaux
rieliaileilleill	pour	ananyses	ues	III C laux

NF-EN 16174; NF EN 13657 Minéralisation à l'eau régale (déchets)

> page 1 de 5 **RvA** L 005

es paramètres réalisés par AL-West BV sont accrédités selon la norme EN ISO/IEC 17025;2017. Seuls les paramètres non

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 20.06.2022 N° Client 35004955

RAPPORT D'ANALYSES

n° Cde 1165024 A2205-313_EPFLi_Combleux_sol

N° échant. 365371 Solide / Eluat

Spécification des échantillons S2 (0-1)

Hydrocarbures Aromatiques Polycycliques (ISO)

	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Métaux					
Arsenic (As)	mg/kg Ms	35	1	+/- 15	Conforme à EN-ISO 11885, EN 16174
Cadmium (Cd)	mg/kg Ms	0,2	0,1	+/- 21	Conforme à EN-ISO 11885, EN 16174
Chrome (Cr)	mg/kg Ms	59	0,2	+/- 12	Conforme à EN-ISO 11885, EN 16174
Cuivre (Cu)	mg/kg Ms	20	0,2	+/- 20	Conforme à EN-ISO 11885, EN 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conforme à ISO 16772 et EN 16174
Nickel (Ni)	mg/kg Ms	36	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Plomb (Pb)	mg/kg Ms	52	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Zinc (Zn)	mg/kg Ms	96	1	+/- 22	Conforme à EN-ISO 11885, EN 16174

ess	Naphtalène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
S	Acénaphtylène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
ğ	Acénaphtène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
	Fluorène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
5	Phénanthrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
0	Anthracène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Š	Fluoranthène	mg/kg Ms	0,14	0,05	+/- 17	équivalent à NF EN 16181
_	Pyrène	mg/kg Ms	0,11	0,05	+/- 19	équivalent à NF EN 16181
ĭ	Benzo(a)anthracène	mg/kg Ms	0,12	0,05	+/- 14	équivalent à NF EN 16181

╝	Benzo(a)anthracène	mg/kg Ms	0,12	0,05	+/- 14	équivalent à NF EN 16181
Š	Chrysène	mg/kg Ms	0,11	0,05	+/- 14	équivalent à NF EN 16181
~	Benzo(b)fluoranthène	mg/kg Ms	<0,10 ^{m)}	0,1		équivalent à NF EN 16181
Ī	Benzo(k)fluoranthène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Ë	Benzo(a)pyrène	mg/kg Ms	0,094	0,05	+/- 14	équivalent à NF EN 16181
2	Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
<u>w</u>	Benzo(g,h,i)pérylène	mg/kg Ms	0,075	0,05	+/- 14	équivalent à NF EN 16181
_	Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181

HAP (6 Bornett) - somme	mg/kg Ms	0,309 */	equivalent a NF EN 16181
Somme HAP (VROM)	mg/kg Ms	0,539 ×)	équivalent à NF EN 16181
HAP (EPA) - somme	mg/kg Ms	0,649 ×)	équivalent à NF EN 16181

Composes aromatiques	
----------------------	--

σ.	Composes aromatiques				
Ĭ	Benzène	mg/kg Ms	<0,050	0,05	ISO 22155
š	Toluène	mg/kg Ms	<0,050	0,05	ISO 22155
n	Ethylbenzène	mg/kg Ms	<0,050	0,05	ISO 22155
esz	m,p-Xylène	mg/kg Ms	<0,10	0,1	ISO 22155
>	o-Xylène	mg/kg Ms	<0,050	0,05	ISO 22155
₹	Naphtalène	mg/kg Ms	<0,10	0,1	ISO 22155
bar	Somme Xylènes	mg/kg Ms	n.d.		ISO 22155
es	BTEX total	mg/kg Ms	n.d.		ISO 22155

COHV

ĸ	00117				
_	Chlorure de Vinyle	mg/kg Ms	<0,02	0,02	ISO 22155
ב ב	Dichlorométhane	mg/kg Ms	<0,05	0,05	ISO 22155
_	Trichlorométhane	mg/kg Ms	<0,05	0,05	ISO 22155
<u>a</u>	Tétrachlorométhane	mg/kg Ms	<0,05	0,05	ISO 22155

TESTING RVA L 005

Les paramètres réalisés par AL-West BV sont accrédités selon la norme EN ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du symbole " *) ".

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Trichloroéthylène	mg/kg Ms	<0.05	0.05		ISO 22155
Tétrachloroéthylène	mg/kg Ms	<0,05	0,05		ISO 22155
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
1,1,2-Trichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
1,1-Dichloroéthane	mg/kg Ms	<0,10	0,1		ISO 22155
1,2-Dichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	0,025		ISO 22155
1,1-Dichloroéthylène	mg/kg Ms	<0,10	0,1		ISO 22155
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	0,025		ISO 22155
Somme cis/trans-1,2-Dichloroéthylènes	mg/kg Ms	n.d.			ISO 22155

Hvdrocarbures totaux (IS)	D١	
---------------------------	----	--

riyurocarbures totaux (130)					
Fraction aliphatique C5-C6	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Fraction C5-C10	mg/kg Ms	<1,0 ×)	1		conforme à NEN-EN-ISO 16558-1
Fraction >C6-C8	mg/kg Ms	<0,40 x)	0,4		conforme à NEN-EN-ISO 16558-1
Fraction C8-C10	mg/kg Ms	<0,40 x)	0,4		conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Hydrocarbures totaux C10-C40	mg/kg Ms	180	20	+/- 21	ISO 16703
Fraction C10-C12	mg/kg Ms	<4,0	4		ISO 16703
Fraction C12-C16	mg/kg Ms	<4,0	4		ISO 16703
Fraction C16-C20	mg/kg Ms	2,9	2	+/- 21	ISO 16703
Fraction C20-C24	mg/kg Ms	7,8	2	+/- 21	ISO 16703
Fraction C24-C28	mg/kg Ms	28,6	2	+/- 21	ISO 16703
Fraction C28-C32	mg/kg Ms	61	2	+/- 21	ISO 16703
Fraction C32-C36	mg/kg Ms	56,1	2	+/- 21	ISO 16703
Fraction C36-C40	mg/kg Ms	22.2	2	+/- 21	ISO 16703

Polychlorobiphényles

Somme 6 PCB	mg/kg Ms	n.d.		NEN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.		NEN-EN 16167
PCB (28)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB (52)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB (101)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB (118)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB (138)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB (153)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB (180)	mg/kg Ms	<0,001	0,001	NEN-EN 16167

Analyses sur éluat après lixiviation

RAPPORT D'ANALYSES					Date	20.06.2022
DADDODT DIANAL VOCE					N° Client	3500495
	4405004.0	0005.040.5			- 1	
n° Cde N° échant. Spécification des échantillons		.2205-313_E	:PFLI_C	ombleux_s	Ol	
ይ N° échant.	365371 Sc	lide / Eluat				
Spécification des échantillons	S2 (0-1)					
			Limite	Incert.		
Trichloroéthylène Tétrachloroéthylène 1,1,1-Trichloroéthane 1,1-Dichloroéthane 1,2-Dichloroéthane 1,2-Dichloroéthane 1,2-Dichloroéthène 1,1-Dichloroéthylène Trans-1,2-Dichloroéthylène Somme cis/trans-1,2-Dichloroéthylènes Hydrocarbures totaux (ISO) Fraction aliphatique C5-C6 Fraction C5-C10 Fraction C8-C10 Fraction aliphatique >C6-C8 Fraction aliphatique >C6-C8 Fraction aromatique >C6-C8	Unité	Résultat	Quant.	Résultat %	Méthode	
Trichloroéthylène	mg/kg Ms	<0,05	0,05			ISO 22155
<u>Tétrachloroéthylène</u>	mg/kg Ms	<0,05	0,05			ISO 22155
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	0,05			ISO 22155
1,1,2-Trichloroéthane	mg/kg Ms	<0,05	0,05			ISO 22155
1,1-Dichloroéthane	mg/kg Ms	<0,10	0,1			ISO 22155
1,2-Dichloroéthane	mg/kg Ms mg/kg Ms	<0,05	0,05			ISO 22155
cis-1,2-Dichloroéthène 1,1-Dichloroéthylène	mg/kg Ms	<0,025 <0,10	0,025 0,1			ISO 22155 ISO 22155
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,10	0,025			ISO 22155
Somme cis/trans-1,2-Dichloroéthylènes	mg/kg Ms	n.d.	0,023			ISO 22155
Liverage to to the second (ISO)	mg/kg Mo	ii.u.				100 22 100
Hydrocarbures totaux (ISO)	man/len Ma	0.00	0.0		aanfarma	à NEN-EN-ISO 16558-1
Fraction aliphatique C5-C6	mg/kg Ms	<0,20 <1.0 ×)	0,2			à NEN-EN-ISO 16558-1
Fraction C5-C10 Fraction >C6-C8	mg/kg Ms mg/kg Ms	<1,0 ^{x)}	1 			à NEN-EN-ISO 16558-1
Fraction C8-C10	mg/kg Ms	<0,40 ×)	0,4			à NEN-EN-ISO 16558-1
Fraction co-c to Fraction aliphatique >C6-C8	mg/kg Ms	<0,40	0,4			à NEN-EN-ISO 16558-1
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	0,2			à NEN-EN-ISO 16558-1
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	0,2			à NEN-EN-ISO 16558-1
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	0,2			à NEN-EN-ISO 16558-1
Fraction aliphatique >C8-C10 Fraction aromatique >C8-C10 Hydrocarbures totaux C10-C40 Fraction C10-C12 Fraction C12-C16	mg/kg Ms	180	20	+/- 21		ISO 16703
Fraction C10-C12	*) mg/kg Ms	<4,0	4	.,		ISO 16703
	*) mg/kg Ms	<4,0	4			ISO 16703
Fraction C16-C20 Fraction C20-C24 Fraction C20-C24	*) mg/kg Ms	2,9	2	+/- 21		ISO 16703
Fraction C20-C24	*) mg/kg Ms	7,8	2	+/- 21		ISO 16703
Fraction C24-C28	*) mg/kg Ms	28,6	2	+/- 21		ISO 16703
Fraction C28-C32	*) mg/kg Ms	61	2	+/- 21		ISO 16703
Fraction C32-C36 Fraction C36-C40	*) mg/kg Ms	56,1	2	+/- 21		ISO 16703
Fraction C36-C40	*) mg/kg Ms	22,2	2	+/- 21		ISO 16703
Polychlorobiphényles						
	mg/kg Ms	n.d.			N	EN-EN 16167
Somme 6 PCB Somme 7 PCB (Ballschmiter) PCB (28) PCB (52) PCB (101) PCB (118) PCB (138)	mg/kg Ms	n.d.				EN-EN 16167
PCB (28)	mg/kg Ms	<0,001	0,001			EN-EN 16167
PCB (52)	mg/kg Ms	<0,001	0,001		N	EN-EN 16167
ਵੇਂ PCB (101)	mg/kg Ms	<0,001	0,001			EN-EN 16167
PCB (118)	mg/kg Ms	<0,001	0,001			EN-EN 16167
	mg/kg Ms	<0,001	0,001			EN-EN 16167
PCB (153)	mg/kg Ms	<0,001	0,001			EN-EN 16167
B PCB (180)	mg/kg Ms	<0,001	0,001		N	EN-EN 16167
Analyses sur éluat après lixiv	/iation					
L/S cumulé	ml/g	10,0	0,1		Selo	n norme lixiviation
Conductivité électrique	μS/cm	250	5	+/- 10		n norme lixiviation
pH pH		8,1	0	+/- 5		n norme lixiviation
Température	°C	20,8	0		Selo	n norme lixiviation
analyses Physico-chimiques	sur éluat					
Résidu à sec	mg/l	150	100	+/- 22	Equival	ent à NF EN ISO 15216
PCB (153) PCB (180) Analyses sur éluat après lixiv L/S cumulé Conductivité électrique pH Température Analyses Physico-chimiques Résidu à sec Fluorures (F) Indice phénol	mg/l	0,6	0,1	+/- 10	Conforme	à ISO 10359-1, conform
Indice phénol	mg/l	<0,010	0,01		N	à EN 16192 EN-EN 16192
<u> </u>	1	,	٥,٥١	1		page 3 de 5

Analyses Physico-chimiques sur éluat

ı٨						
5	Résidu à sec	mg/l	150	100	+/- 22	Equivalent à NF EN ISO 15216
<u></u>	Fluorures (F)	mg/l	0,6	0,1	+/- 10	Conforme à ISO 10359-1, conforme à EN 16192
5	Indice phénol	ma/l	<0.010	0,01		NEN-EN 16192

page 3 de 5 **RvA** L 005

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 20.06.2022 N° Client 35004955

RAPPORT D'ANALYSES

symbole " *) ".

SO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du

selon

accrédités

es paramètres réalisés par AL-West

n° Cde 1165024 A2205-313_EPFLi_Combleux_sol

365371 Solide / Eluat N° échant.

Spécification des échantillons S2 (0-1)

	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Chlorures (CI)	mg/l	0,8	0,1	+/- 10	Conforme à ISO 15923-1
Sulfates (SO4)	mg/l	45	5	+/- 10	Conforme à ISO 15923-1
COT	mg/l	2,5	1	+/- 10	conforme EN 16192
Métaux sur éluat					
Antimoine (Sb)	µg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Arsenic (As)	μg/I	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Baryum (Ba)	μg/I	30	10	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Cadmium (Cd)	μg/I	<0,1	0,1		Conforme à EN-ISO 17294-2 (2004)
Chrome (Cr)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)
Cuivre (Cu)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)
Mercure	μg/l	° <0,03	0,03		méthode interne (conforme NEN- EN-ISO 12846)
Molybdène (Mo)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Nickel (Ni)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Plomb (Pb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Sélénium (Se)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Zinc (Zn)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

m) Etant donnée l'influence perturbatrice de l'échantillon, les limites de quantification ont été relevées.

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé.

Le calcul de l' incertitude de mesure analytique combinée et élargie mentionné dans le lope pour le subset sur le GUM (Guide pour l' expression de l' incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OILLE, 2008) et Nordtest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d'élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance).

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Début des analyses: 10.06.2022 Fin des analyses: 17.06.2022

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été recu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 20.06.2022 N° Client 35004955

RAPPORT D'ANALYSES

n° Cde 1165024 A2205-313_EPFLi_Combleux_sol

N° échant. 365371 Solide / Eluat

Spécification des échantillons S2 (0-1)

AL-West B.V. Mme Fatima-Zahra Saati, Tel. 33/380680132 Chargée relation clientèle

et/ou externalisés sont marqués du symbole " *) ".

accrédités

Seuls les paramètres non

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

ENVISOL 2-4, rue Hector Berlioz 38110 LA TOUR DU PIN **FRANCE**

> 20.06.2022 Date N° Client 35004955

RAPPORT D'ANALYSES

n° Cde 1165024 A2205-313_EPFLi_Combleux_sol

N° échant. 365372 Solide / Eluat

Date de validation 10.06.2022 Prélèvement 07.06.2022 Prélèvement par: Client Spécification des échantillons S5 (0-1)

		Unité		Résultat	Quant.	Résultat %	Méthode
5	Lixiviation						
7	Fraction >4mm (EN12457-2)	%	0	27,9	0,1		Selon norme lixiviation
ź	Masse brute Mh pour lixiviation *)	g	0	98	1		Selon norme lixiviation
3	Lixiviation (EN 12457-2)		0				NF EN 12457-2
3	Volume de lixiviant L ajouté pour l'extraction *)	ml		900	1		Selon norme lixiviation

Limite

Incert.

Prétraitement des échantillons

Masse échantillon total inférieure à 2 kg	kg	0	0,69	0		
Prétraitement de l'échantillon		0				Conforme à NEN-EN 16179
Broyeur à mâchoires		0				méthode interne
Matière sèche	%	0	91,8	0,01	+/- 1	NEN-EN 15934 ; EN12880

Calcul des Fractions solubles

Fraction soluble cumulé (var. L/S)	mg/kg Ms	0 - 1000	1000	Selon norme lixiviation
Antimoine cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
Arsenic cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
Baryum cumulé (var. L/S)	mg/kg Ms	0 - 0,1	0,1	Selon norme lixiviation
Cadmium cumulé (var. L/S)	mg/kg Ms	0 - 0,001	0,001	Selon norme lixiviation
Chlorures cumulé (var. L/S)	mg/kg Ms	7,0	1	Selon norme lixiviation
Chrome cumulé (var. L/S)	mg/kg Ms	0 - 0,02	0,02	Selon norme lixiviation
COT cumulé (var. L/S)	mg/kg Ms	0 - 10	10	Selon norme lixiviation
Cuivre cumulé (var. L/S)	mg/kg Ms	0 - 0,02	0,02	Selon norme lixiviation
Fluorures cumulé (var. L/S)	mg/kg Ms	3,0	1	Selon norme lixiviation
Indice phénol cumulé (var. L/S)	mg/kg Ms	0 - 0,1	0,1	Selon norme lixiviation
Mercure cumulé (var. L/S)	mg/kg Ms	0 - 0,0003	0,0003	Selon norme lixiviation
Molybdène cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
Nickel cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
Plomb cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
Sélénium cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
Sulfates cumulé (var. L/S)	mg/kg Ms	0 - 50	50	Selon norme lixiviation
Zinc cumulé (var. L/S)	mg/kg Ms	0 - 0,02	0,02	Selon norme lixiviation

Analyses Physico-chimiques

	1111	300			CCIOTI HOTHIC IIXIVIALIOTI
Prétraitement des échantillo	ns				
Masse échantillon total inférieure à 2 kg	kg	° 0,69	0		
Prétraitement de l'échantillon		0			Conforme à NEN-EN 161
Broyeur à mâchoires		0			méthode interne
Matière sèche	%	° 91,8	0,01	+/- 1	NEN-EN 15934 ; EN128
Calcul des Fractions soluble	es				
Fraction soluble cumulé (var. L/S)	*) mg/kg Ms	0 - 1000	1000		Selon norme lixiviation
Antimoine cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Arsenic cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Baryum cumulé (var. L/S)	*) mg/kg Ms	0 - 0,1	0,1		Selon norme lixiviation
Cadmium cumulé (var. L/S)	*) mg/kg Ms	0 - 0,001	0,001		Selon norme lixiviation
Chlorures cumulé (var. L/S)	*) mg/kg Ms	7,0	1		Selon norme lixiviation
Chrome cumulé (var. L/S)	*) mg/kg Ms	0 - 0,02	0,02		Selon norme lixiviation
COT cumulé (var. L/S)	*) mg/kg Ms	0 - 10	10		Selon norme lixiviation
Cuivre cumulé (var. L/S)	*) mg/kg Ms	0 - 0,02	0,02		Selon norme lixiviation
Fluorures cumulé (var. L/S)	*) mg/kg Ms	3,0	1		Selon norme lixiviation
Indice phénol cumulé (var. L/S)	*) mg/kg Ms	0 - 0,1	0,1		Selon norme lixiviation
Mercure cumulé (var. L/S)	*) mg/kg Ms	0 - 0,0003	0,0003		Selon norme lixiviation
Molybdène cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Nickel cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Plomb cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Sélénium cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Sulfates cumulé (var. L/S)	*) mg/kg Ms	0 - 50	50		Selon norme lixiviation
Zinc cumulé (var. L/S)	*) mg/kg Ms	0 - 0,02	0,02		Selon norme lixiviation
Analyses Physico-chimique	s				
pH-H2O		° 9,0	0,1	+/- 10	Cf. NEN-ISO 10390 (sol uniquement)
COT Carbone Organique Total	mg/kg Ms	1200	1000	+/- 16	conforme ISO 10694 (200
Sulfates cumulé (var. L/S) Zinc cumulé (var. L/S) Analyses Physico-chimique pH-H2O COT Carbone Organique Total Prétraitement pour analyses	1 0 0		1000	., .,	,
					page 1 c

AL-West B.V.
Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Minéralisation à l'eau régale	0				NF-EN 16174; NF EN 13657 (déchets)
Métaux					
Arsenic (As)	mg/kg Ms	4,5	1	+/- 15	Conforme à EN-ISO 11885, EN 16174
Cadmium (Cd)	mg/kg Ms	<0,1	0,1		Conforme à EN-ISO 11885, EN 16174
Chrome (Cr)	mg/kg Ms	11	0,2	+/- 12	Conforme à EN-ISO 11885, EN 16174
Cuivre (Cu)	mg/kg Ms	4,3	0,2	+/- 20	Conforme à EN-ISO 11885, EN 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conforme à ISO 16772 et EN 16174
Nickel (Ni)	mg/kg Ms	7,7	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Plomb (Pb)	mg/kg Ms	6,5	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Zinc (Zn)	mg/kg Ms	17	1	+/- 22	Conforme à EN-ISO 11885, EN 16174

Hydrocarbures	Aromotiques	Polyovaliause	(160)
Hydrocarbures	Aromatiques	Polycycliques	(150)

_					
ě	Naphtalène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
	Acénaphtylène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
5	Acénaphtène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
V	Fluorène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Š	Phénanthrène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
-	Anthracène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
נ	Fluoranthène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
5	Pyrène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
2	Benzo(a)anthracène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
ū	Chrysène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
<u>ב</u>	Benzo(b)fluoranthène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
5	Benzo(k)fluoranthène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
<u>v</u>	Benzo(a)pyrène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
5	Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Ŋ	Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Ď	Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
5	HAP (6 Borneff) - somme	mg/kg Ms	n.d.		équivalent à NF EN 16181
3	Somme HAP (VROM)	mg/kg Ms	n.d.		équivalent à NF EN 16181
ם =	HAP (EPA) - somme	mg/kg Ms	n.d.		équivalent à NF EN 16181
=					

					Date N° Client	20.06.20 350049
RAPPORT D'ANALYSES						
n° Cde	11650)24 A2205-313_l	EPFLi C	ombleux so	ol	
N° échant.		72 Solide / Eluat				
Spécification des échantillons	S5 (0					
Specification des echantilloris	33 (0	-1)	Limita	lnoort		
	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode	
Minéralisation à l'eau régale		0				16174; NF EN 13657
						(déchets)
Métaux						
Arsenic (As)	mg/kg Ms	4,5	1	+/- 15	Conform	e à EN-ISO 11885, E 16174
Cadmium (Cd)	mg/kg Ms	<0,1	0,1		Conform	e à EN-ISO 11885, E
Chrome (Cr)	mg/kg Ms	11	0,2	+/- 12	Conform	16174 e à EN-ISO 11885, E
						16174
Cuivre (Cu)	mg/kg Ms	4,3	0,2	+/- 20	Conform	e à EN-ISO 11885, I 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conforn	ne à ISO 16772 et E
Nickel (Ni)	mg/kg Ms	7,7	0,5	+/- 11	Conform	<u>16174</u> e à EN-ISO 11885, I
,		-				16174
Plomb (Pb)	mg/kg Ms	6,5	0,5	+/- 11	Conform	e à EN-ISO 11885, 1 16174
Zinc (Zn)	mg/kg Ms	17	1	+/- 22	Conform	e à EN-ISO 11885, I
Uludra a subjura a A va matisu a a	Dolyovalianos	(160)				16174
Hydrocarbures Aromatiques Naphtalène	mg/kg Ms	<0,050	0,05		óguiva	ent à NF EN 1618
Acénaphtylène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Acénaphtène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Fluorène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Phénanthrène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Anthracène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Fluoranthène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Pyrène	mg/kg Ms	<0,050	0,05		équiva	ent à NF EN 1618
Benzo(a)anthracène	mg/kg Ms	<0,050	0,05		équiva	ent à NF EN 1618
Chrysène	mg/kg Ms	<0,050	0,05		équiva	ent à NF EN 1618
Benzo(b)fluoranthène	mg/kg Ms	<0,050	0,05		équiva	ent à NF EN 1618
Benzo(k)fluoranthène	mg/kg Ms	<0,050	0,05		équiva	ent à NF EN 1618
Benzo(a)pyrène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
HAP (6 Borneff) - somme	mg/kg Ms	n.d.				ent à NF EN 1618
Somme HAP (VROM)	mg/kg Ms	n.d.				ent à NF EN 1618
HAP (EPA) - somme	mg/kg Ms	n.d.			équiva	ent à NF EN 1618
Composés aromatiques						
Benzène	mg/kg Ms	<0,050	0,05			ISO 22155
Toluène	mg/kg Ms	<0,050	0,05			ISO 22155
Ethylbenzène	mg/kg Ms	<0,050	0,05			ISO 22155
m,p-Xylène	mg/kg Ms	<0,10	0,1			ISO 22155
o-Xylène	mg/kg Ms	0,12	0,05	+/- 19		ISO 22155
Naphtalène	mg/kg Ms	<0,10	0,1			ISO 22155
Somme Xylènes	mg/kg Ms	0,12 ×)				ISO 22155
BTEX total	*) mg/kg Ms	0,12 ^{x)}				ISO 22155
COHV	,			1	I	
Chlorure de Vinyle	mg/kg Ms	<0,02	0,02			ISO 22155
Dichlorométhane	mg/kg Ms	<0,05	0,05		1	ISO 22155

COHV

_	Chlorure de Vinyle	mg/kg Ms	<0,02	0,02	ISO 22155
	Dichlorométhane	mg/kg Ms	<0,05	0,05	ISO 22155

page 2 de 5 **RvA** L 005

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

					Date	20.06.20
					N° Client	350049
RAPPORT D'ANALYSES						
n° Cde	1165024 A	2205-313_E	EPFLi_C	ombleux_s	ol	
N° échant.	365372 So	lide / Eluat				
Spécification des échantillons	S5 (0-1)					
•	,		Limite	Incert.		
	Unité	Résultat	Quant.	Résultat %	Méthod	е
Trichlorométhane	mg/kg Ms	<0,05	0,05			ISO 22155
Tétrachlorométhane	mg/kg Ms	<0,05	0,05			ISO 22155
Trichloroéthylène	mg/kg Ms	<0,05	0,05			ISO 22155
Tétrachloroéthylène	mg/kg Ms	<0,05	0,05			ISO 22155
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	0,05			ISO 22155
1,1,2-Trichloroéthane	mg/kg Ms mg/kg Ms	<0,05	0,05			ISO 22155
1,1-Dichloroéthane 1,2-Dichloroéthane	mg/kg Ms	<0,10 <0,05	0,1 0,05			ISO 22155 ISO 22155
cis-1,2-Dichloroéthène	mg/kg Ms	<0,03	0,03			ISO 22155
1,1-Dichloroéthylène	mg/kg Ms	<0,10	0,020			ISO 22155
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	0,025			ISO 22155
Somme cis/trans-1,2-Dichloroéthylènes	mg/kg Ms	n.d.	-,			ISO 22155
Hydrocarbures totaux (ISO)				<u> </u>		
Fraction aliphatique C5-C6	mg/kg Ms	<0,20	0,2		conform	ne à NEN-EN-ISO 1655
Fraction C5-C10	mg/kg Ms	<1,0 ×)	1		conform	ne à NEN-EN-ISO 1655
Fraction >C6-C8	mg/kg Ms	<0,40 ×)	0,4		conform	ne à NEN-EN-ISO 1655
Fraction C8-C10	mg/kg Ms	<0,40 ×)	0,4			ne à NEN-EN-ISO 1655
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	0,2			ne à NEN-EN-ISO 1655
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	0,2			ne à NEN-EN-ISO 1655
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	0,2			ne à NEN-EN-ISO 1655 ne à NEN-EN-ISO 1655
Fraction aromatique >C8-C10	mg/kg Ms mg/kg Ms	<0,20	0,2		CONION	
Hydrocarbures totaux C10-C40 Fraction C10-C12	*) mg/kg Ms	<20,0 <4,0	<u>20</u> 4			ISO 16703 ISO 16703
Fraction C12-C16	*) mg/kg Ms	<4,0	4			ISO 16703
Fraction C16-C20	*) mg/kg Ms	<2,0	2			ISO 16703
Fraction C20-C24	*) mg/kg Ms	<2,0	2			ISO 16703
Fraction C24-C28	*) mg/kg Ms	<2,0	2			ISO 16703
Fraction C28-C32	*) mg/kg Ms	<2,0	2			ISO 16703
Fraction C32-C36	*) mg/kg Ms	<2,0	2			ISO 16703
Fraction C36-C40	*) mg/kg Ms	<2,0	2			ISO 16703
Polychlorobiphényles						
Somme 6 PCB	mg/kg Ms	n.d.				NEN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.				NEN-EN 16167
PCB (28)	mg/kg Ms	<0,001	0,001			NEN-EN 16167
PCB (52)	mg/kg Ms	<0,001	0,001			NEN-EN 16167
PCB (101)	mg/kg Ms	<0,001	0,001			NEN-EN 16167
PCB (118) PCB (138)	mg/kg Ms mg/kg Ms	<0,001 <0,001	0,001			NEN-EN 16167
PCB (138) PCB (153)	mg/kg Ms	<0,001	0,001			<u>NEN-EN 16167</u> NEN-EN 16167
PCB (180)	mg/kg Ms	<0,001	0,001			NEN-EN 16167
		-0,001	0,001		'	10101
Analyses sur éluat après lixiv	ml/g	10,0	0,1		901	on norme lixiviation
Conductivité électrique	µS/cm	56,6	<u>0,1</u> 5	+/- 10		on norme lixiviation
pH	μο/οπ	8,1	0	+/- 10		on norme lixiviation
Température	°C	20,6	0	1, 0		on norme lixiviation
Analyses Physico-chimiques			-	1	1 200	
Résidu à sec	mg/l	<100	100		Equive	alent à NF EN ISO 1521

Hvdroca	rbures	totaux	(ISO)
IIVUIUG	ıı bul c ə	LULAUA	11001

<u></u>	Hydrocarbures totaux (ISO)				
ğ	Fraction aliphatique C5-C6	mg/kg Ms	<0,20	0,2	conforme à NEN-EN-ISO 16558-1
מ	Fraction C5-C10	mg/kg Ms	<1,0 ×)	1	conforme à NEN-EN-ISO 16558-1
2	Fraction >C6-C8	mg/kg Ms	<0,40 ×)	0,4	conforme à NEN-EN-ISO 16558-1
מַמ	Fraction C8-C10	mg/kg Ms	<0,40 ×)	0,4	conforme à NEN-EN-ISO 16558-1
	Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	0,2	conforme à NEN-EN-ISO 16558-1
5	Fraction aromatique >C6-C8	mg/kg Ms	<0,20	0,2	conforme à NEN-EN-ISO 16558-1
	Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	0,2	conforme à NEN-EN-ISO 16558-1
5	Fraction aromatique >C8-C10	mg/kg Ms	<0,20	0,2	conforme à NEN-EN-ISO 16558-1
-	Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	20	ISO 16703
וַ	Fraction C10-C12	mg/kg Ms	<4,0	4	ISO 16703
Š	Fraction C12-C16	mg/kg Ms	<4,0	4	ISO 16703
_	Fraction C16-C20	mg/kg Ms	<2,0	2	ISO 16703
ī	Fraction C20-C24	mg/kg Ms	<2,0	2	ISO 16703
	Fraction C24-C28	mg/kg Ms	<2,0	2	ISO 16703
5	Fraction C28-C32	mg/kg Ms	<2,0	2	ISO 16703
<u>0</u>	Fraction C32-C36	mg/kg Ms	<2,0	2	ISO 16703
5	Fraction C36-C40	mg/kg Ms	<2,0	2	ISO 16703

Polychlorobiphényles

Somme 6 PCB	mg/kg Ms	n.d.		NEN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.		NEN-EN 16167
PCB (28)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB (52)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB (101)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB (118)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB (138)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB (153)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB (180)	mg/kg Ms	<0.001	0,001	NEN-EN 16167

Analyses sur éluat après lixiviation

Šes	L/S cumulé	ml/g	10,0	0,1		Selon norme lixiviation
ä	Conductivité électrique	μS/cm	56,6	5	+/- 10	Selon norme lixiviation
<u>e</u>	рН		8,1	0	+/- 5	Selon norme lixiviation
ĕ	Température	°C	20,6	0		Selon norme lixiviation
11						

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 20.06.2022 N° Client 35004955

RAPPORT D'ANALYSES

n° Cde 1165024 A2205-313_EPFLi_Combleux_sol

N° échant. 365372 Solide / Eluat

Spécification des échantillons S5 (0-1)

'	Unité	, Résultat	Limite Quant.	Incert. Résultat %	Méthode
Fluorures (F)	mg/l	0,3	0,1	+/- 10	Conforme à ISO 10359-1, conforme à EN 16192
Indice phénol	mg/l	<0,010	0,01		NEN-EN 16192
Chlorures (CI)	mg/l	0,7	0,1	+/- 10	Conforme à ISO 15923-1
Sulfates (SO4)	mg/l	<5,0	5		Conforme à ISO 15923-1
COT	mg/l	<1,0	1		conforme EN 16192
Métaux sur éluat					
Antimoine (Sb)	µg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Arsenic (As)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Baryum (Ba)	μg/l	<10	10		Conforme à EN-ISO 17294-2 (2004)
Cadmium (Cd)	μg/I	<0,1	0,1		Conforme à EN-ISO 17294-2 (2004)
Chrome (Cr)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)
Cuivre (Cu)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)
Mercure	μg/l	° <0,03	0,03		méthode interne (conforme NEN- EN-ISO 12846)
Molybdène (Mo)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Nickel (Ni)	μg/I	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Plomb (Pb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Sélénium (Se)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Zinc (Zn)	µg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé. Le calcul de l' incertitude de mesure analytique combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l' expression de l' incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordtest Report (Manuel pour le calcul de l'incertitude de mesure dans les Sandayse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d' élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance).

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Début des analyses: 10.06.2022 Fin des analyses: 17.06.2022

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

la norme

sont

ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du symbole " *)

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 20.06.2022 N° Client 35004955

RAPPORT D'ANALYSES

n° Cde 1165024 A2205-313_EPFLi_Combleux_sol N° échant. **365372** Solide / Eluat

Spécification des échantillons S5 (0-1)

AL-West B.V. Mme Fatima-Zahra Saati, Tel. 33/380680132 Chargée relation clientèle

accrédités et/ou externalisés sont marqués du symbole " *) ".

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

ENVISOL 2-4, rue Hector Berlioz 38110 LA TOUR DU PIN **FRANCE**

> Date 20.06.2022 N° Client 35004955

RAPPORT D'ANALYSES

n° Cde 1165024 A2205-313_EPFLi_Combleux_sol

N° échant. 365373 Solide / Eluat

Date de validation 10.06.2022 Prélèvement 07.06.2022 Prélèvement par: Client Spécification des échantillons S17 (0-1)

Specification des echantillons	S 31	17 (0-1)				
	Unité		Résultat	Limite Quant.	Incert. Résultat %	Méthode
Lixiviation						
Fraction >4mm (EN12457-2)	%	0	1,4	0,1		Selon norme lixiviation
Masse brute Mh pour lixiviation	*) g	0	110	1		Selon norme lixiviation
Lixiviation (EN 12457-2)		0				NF EN 12457-2
Volume de lixiviant L ajouté pour l'extract	ion *) ml		900	1		Selon norme lixiviation
Prétraitement des échantill	ons					
Masse échantillon total inférieure à 2 kg	kg	•	0,51	0		
Prétraitement de l'échantillon	9	•	-,-	-		Conforme à NEN-EN 1617
Matière sèche	%	0	85,5	0,01	+/- 1	NEN-EN 15934 ; EN128
Calcul des Fractions solub	les					
Fraction soluble cumulé (var. L/S)	*) mg/kg Ms		0 - 1000	1000		Selon norme lixiviation
Antimoine cumulé (var. L/S)	*) mg/kg Ms		0 - 0,05	0.05		Selon norme lixiviation
Arsenic cumulé (var. L/S)	*) mg/kg Ms		0 - 0,05	0,05		Selon norme lixiviation
Baryum cumulé (var. L/S)	*) mg/kg Ms		0,21	0,1		Selon norme lixiviation
Cadmium cumulé (var. L/S)	*) mg/kg Ms		0 - 0,001	0,001		Selon norme lixiviation
Chlorures cumulé (var. L/S)	*) mg/kg Ms		11	1		Selon norme lixiviation
Chrome cumulé (var. L/S)	*) mg/kg Ms		0 - 0,02	0,02		Selon norme lixiviation
COT cumulé (var. L/S)	*) mg/kg Ms		30	10		Selon norme lixiviation
Cuivre cumulé (var. L/S)	*) mg/kg Ms		0,08	0,02		Selon norme lixiviation
Fluorures cumulé (var. L/S)	*) mg/kg Ms		3,0	1		Selon norme lixiviation
Indice phénol cumulé (var. L/S)	*) mg/kg Ms		0 - 0,1	0,1		Selon norme lixiviation
Mercure cumulé (var. L/S)	*) mg/kg Ms		0 - 0,0003	0,0003		Selon norme lixiviation
Molybdène cumulé (var. L/S)	*) mg/kg Ms		0 - 0,05	0,05		Selon norme lixiviation
Nickel cumulé (var. L/S)	*) mg/kg Ms		0 - 0,05	0,05		Selon norme lixiviation
Plomb cumulé (var. L/S)	*) mg/kg Ms		0 - 0,05	0,05		Selon norme lixiviation
Sélénium cumulé (var. L/S)	*) mg/kg Ms		0 - 0,05	0,05		Selon norme lixiviation
Sulfates cumulé (var. L/S)	*) mg/kg Ms		0 - 50	50		Selon norme lixiviation
Zinc cumulé (var. L/S)	*) mg/kg Ms		0 - 0,02	0,02		Selon norme lixiviation
Analyses Physico-chimiqu	es					
pH-H2O		0	8,2	0,1	+/- 10	Cf. NEN-ISO 10390 (sol uniquement)
COT Carbone Organique Total	mg/kg Ms		2900	1000	+/- 16	conforme ISO 10694 (2008
Prétraitement pour analyse	es des métaux	K				
Minéralisation à l'eau régale		0				NF-EN 16174; NF EN 13657 (déchets)

pH-H2O		° 8,2	0,1	+/- 10	Cf. NEN-ISO 10390 (sol uniquement)
COT Carbone Organique Total	mg/kg Ms	2900	1000	+/- 16	conforme ISO 10694 (2008)

AL-West B.V.
Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 20.06.2022 N° Client 35004955

RAPPORT D'ANALYSES

n° Cde 1165024 A2205-313_EPFLi_Combleux_sol

N° échant. **365373** Solide / Eluat

Spécification des échantillons S17 (0-1)

	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Métaux					
Arsenic (As)	mg/kg Ms	4,1	1	+/- 15	Conforme à EN-ISO 11885, EN 16174
Cadmium (Cd)	mg/kg Ms	<0,1	0,1		Conforme à EN-ISO 11885, EN 16174
Chrome (Cr)	mg/kg Ms	21	0,2	+/- 12	Conforme à EN-ISO 11885, EN 16174
Cuivre (Cu)	mg/kg Ms	6,2	0,2	+/- 20	Conforme à EN-ISO 11885, EN 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conforme à ISO 16772 et EN 16174
Nickel (Ni)	mg/kg Ms	13	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Plomb (Pb)	mg/kg Ms	20	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Zinc (Zn)	mg/kg Ms	35	1	+/- 22	Conforme à EN-ISO 11885, EN 16174

, ,			16174
Hydrocarbures Aromatique	es Polycycliques (I	SO)	
Naphtalène	mg/kg Ms	<0,050 0,05	équivalent à NF EN 16181
Acénaphtylène	mg/kg Ms	<0,050 0,05	équivalent à NF EN 16181
Acénaphtène	mg/kg Ms	<0,050 0,05	équivalent à NF EN 16181
Fluorène	mg/kg Ms	<0,050 0,05	équivalent à NF EN 16181
Phénanthrène	mg/kg Ms	<0,050 0,05	équivalent à NF EN 16181
Anthracène	mg/kg Ms	<0,050 0,05	équivalent à NF EN 16181
Fluoranthène	mg/kg Ms	<0,050 0,05	équivalent à NF EN 16181
Pyrène	mg/kg Ms	<0,050 0,05	équivalent à NF EN 16181
Benzo(a)anthracène	mg/kg Ms	<0,050 0,05	équivalent à NF EN 16181
Chrysène	mg/kg Ms	<0,050 0,05	équivalent à NF EN 16181
Benzo(b)fluoranthène	mg/kg Ms	<0,050 0,05	équivalent à NF EN 16181
Benzo(k)fluoranthène	mg/kg Ms	<0,050 0,05	équivalent à NF EN 16181
Benzo(a)pyrène	mg/kg Ms	<0,050 0,05	équivalent à NF EN 16181
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050 0,05	équivalent à NF EN 16181
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050 0,05	équivalent à NF EN 16181
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050 0,05	équivalent à NF EN 16181
HAP (6 Borneff) - somme	mg/kg Ms	n.d.	équivalent à NF EN 16181
Somme HAP (VROM)	mg/kg Ms	n.d.	équivalent à NF EN 16181
HAP (EPA) - somme	mg/kg Ms	n.d.	équivalent à NF EN 16181
· · · · · · · · · · · · · · · · · · ·		·	

Com	nocác	aromatiques
Com	poses	aromatiques

ď	Composes aromatiques				
Ĕ	Benzène	mg/kg Ms	<0,050	0,05	ISO 22155
ó	Toluène	mg/kg Ms	<0,050	0,05	ISO 22155
۵	Ethylbenzène	mg/kg Ms	<0,050	0,05	ISO 22155
ß	m,p-Xylène	mg/kg Ms	<0,10	0,1	ISO 22155
>	o-Xylène	mg/kg Ms	<0,050	0,05	ISO 22155
ζ	Naphtalène	mg/kg Ms	<0,10	0,1	ISO 22155
Ē	Somme Xylènes	mg/kg Ms	n.d.		ISO 22155
מ	BTEX total	mg/kg Ms	n.d.		ISO 22155
n	<u> </u>				

COHV

00.11					
Chlorure de Vinyle	mg/kg Ms	<0,02	0,02		ISO 22155
Dichlorométhane	mg/kg Ms	<0,05	0,05		ISO 22155
Trichlorométhane	mg/kg Ms	<0,05	0,05		ISO 22155
Tétrachlorométhane	mg/kg Ms	<0,05	0,05		ISO 22155
	Chlorure de Vinyle Dichlorométhane Trichlorométhane Tétrachlorométhane	Chlorure de Vinylemg/kg MsDichlorométhanemg/kg MsTrichlorométhanemg/kg Ms	Chlorure de Vinylemg/kg Ms<0,02Dichlorométhanemg/kg Ms<0,05	Chlorure de Vinyle mg/kg Ms <0,02 0,02 Dichlorométhane mg/kg Ms <0,05	Chlorure de Vinyle mg/kg Ms <0,02 0,02 Dichlorométhane mg/kg Ms <0,05

RvA L 005

Les paramètres réalisés par AL-West BV sont accrédités selon la norme EN ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du symbole " *) ".

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Trichloroéthylène	mg/kg Ms	<0,05	0,05		ISO 22155
Tétrachloroéthylène	mg/kg Ms	<0,05	0,05		ISO 22155
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
1,1,2-Trichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
1,1-Dichloroéthane	mg/kg Ms	<0,10	0,1		ISO 22155
1,2-Dichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	0,025		ISO 22155
1,1-Dichloroéthylène	mg/kg Ms	<0,10	0,1		ISO 22155
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	0,025		ISO 22155
Somme cis/trans-1,2-Dichloroéthylènes	mg/kg Ms	n.d.			ISO 22155

Hydrocarbures to	otaux (ISO)
------------------	-------------

Tryurocarbures totaux (130)				
Fraction aliphatique C5-C6	mg/kg Ms	<0,20	0,2	conforme à NEN-EN-ISO 16558-1
Fraction C5-C10	mg/kg Ms	<1,0 ×)	1	conforme à NEN-EN-ISO 16558-1
Fraction >C6-C8	mg/kg Ms	<0,40 x)	0,4	conforme à NEN-EN-ISO 16558-1
Fraction C8-C10	mg/kg Ms	<0,40 x)	0,4	conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	0,2	conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	0,2	conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	0,2	conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	0,2	conforme à NEN-EN-ISO 16558-1
Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	20	ISO 16703
Fraction C10-C12	*) mg/kg Ms	<4,0	4	ISO 16703
Fraction C12-C16	*) mg/kg Ms	<4,0	4	ISO 16703
Fraction C16-C20	*) mg/kg Ms	<2,0	2	ISO 16703
Fraction C20-C24	*) mg/kg Ms	<2,0	2	ISO 16703
Fraction C24-C28	*) mg/kg Ms	<2,0	2	ISO 16703
Fraction C28-C32	*) mg/kg Ms	<2,0	2	ISO 16703
Fraction C32-C36	*) mg/kg Ms	<2,0	2	ISO 16703
Fraction C36-C40	*) mg/kg Ms	<2.0	2	ISO 16703

Polychlorobiphényles

Somme 6 PCB	mg/kg Ms	n.d.		NEN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.		NEN-EN 16167
PCB (28)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB (52)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB (101)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB (118)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB (138)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB (153)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB (180)	mg/kg Ms	<0,001	0,001	NEN-EN 16167

Analyses sur éluat après lixiviation

(Date	20.06.2022
symbole 1	A DDODT DIANAL VOEO					N° Client	3500495
	RAPPORT D'ANALYSES						
ທ	n° Cde		024 A2205-313_E	:PFLi_C	ombleux_s	ol	
ğ N	N° échant.	3653	73 Solide / Eluat				
פש כ	Spécification des échantillons	S17	(0-1)				
i C				Limite	Incert.		
Seuls les parametres non accredites evou externalises sont		Unité	Résultat	Quant.	Résultat %	Méthode	
I ise	Trichloroéthylène	mg/kg Ms	<0,05	0,05			ISO 22155
E I	Γétrachloroéthylène	mg/kg Ms	<0,05	0,05			ISO 22155
2 1 2 2 1	,1,1-Trichloroéthane	mg/kg Ms	<0,05	0,05			ISO 22155
<u>ا</u> ا	I,1,2-Trichloroéthane	mg/kg Ms	<0,05	0,05			ISO 22155
61/C	I,1-Dichloroéthane	mg/kg Ms mg/kg Ms	<0,10 <0,05	0,1 0,05			ISO 22155 ISO 22155
se L	cis-1,2-Dichloroéthène	mg/kg Ms	<0,05	0,05			ISO 22155
e 1	l,1-Dichloroéthylène	mg/kg Ms	<0,023	0,023			ISO 22155
	Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	0,025			ISO 22155
S S	Somme cis/trans-1,2-Dichloroéthylènes	mg/kg Ms	n.d.	0,020			ISO 22155
ے اور ا	Hydrocarbures totaux (ISO)	1 0 0 1				1	
ë F	Fraction aliphatique C5-C6	mg/kg Ms	<0,20	0,2		conforme	à NEN-EN-ISO 16558-1
<u>ہ</u> آھے آج	Fraction C5-C10	mg/kg Ms	<1,0 x)	1		conforme	à NEN-EN-ISO 16558-1
jare F	Fraction >C6-C8	mg/kg Ms	<0,40 ^{x)}	0,4		conforme	à NEN-EN-ISO 16558-1
s F	Fraction C8-C10	mg/kg Ms	<0,40 ×)	0,4		conforme	à NEN-EN-ISO 16558-1
s F	Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	0,2		conforme	à NEN-EN-ISO 16558-1
ρ F	Fraction aromatique >C6-C8	mg/kg Ms	<0,20	0,2			à NEN-EN-ISO 16558-1
": <u>F</u>	Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	0,2			à NEN-EN-ISO 16558-1
5 <i>E</i>	Fraction aromatique >C8-C10	mg/kg Ms	<0,20	0,2		conforme	à NEN-EN-ISO 16558-1
<u>`</u> }	Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	20			ISO 16703
	Fraction C10-C12	*) mg/kg Ms	<4,0	4			ISO 16703
	Fraction C12-C16	*) mg/kg Ms	<4,0	4			ISO 16703
	Fraction C16-C20	*) mg/kg Ms	<2,0	2			ISO 16703
2 [Fraction C20-C24 Fraction C24-C28	*) mg/kg Ms *) mg/kg Ms	<2,0	2			ISO 16703
╸╚	Fraction C24-C26	*) mg/kg Ms	<2,0 <2,0	2			ISO 16703
9 F	Fraction C32-C36	*) mg/kg Ms	<2,0	2			ISO 16703
	Fraction C36-C40	*) mg/kg Ms	<2,0	2			ISO 16703
_		,g,ge	\ L ,0				100 10700
⊆ <u>"</u>	Polychlorobiphényles Somme 6 PCB	mg/kg Ms	n d			N	EN-EN 16167
	Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d. n.d.				EN-EN 16167
ies i	PCB (28)	mg/kg Ms	<0,001	0,001			EN-EN 16167
e '	PCB (52)	mg/kg Ms	<0,001	0,001			EN-EN 16167
	PCB (101)	mg/kg Ms	<0,001	0,001			EN-EN 16167
ĔF	PCB (118)	mg/kg Ms	<0,001	0,001			EN-EN 16167
	PCB (138)	mg/kg Ms	<0,001	0,001		N	EN-EN 16167
o ₽	PCB (153)	mg/kg Ms	<0,001	0,001			EN-EN 16167
es F	PCB (180)	mg/kg Ms	<0,001	0,001		N	EN-EN 16167
^{>} , <i>F</i>	Analyses sur éluat après lixiv	riation					
₹ [_/S cumulé	ml/g	10,0	0,1		Selo	n norme lixiviation
ba	Conductivité électrique	μS/cm	140	5	+/- 10	Selo	n norme lixiviation
	Н		8,2	0	+/- 5		n norme lixiviation
ses	Température	°C	20,3	0		Selo	n norme lixiviation
ealises		(1					
s realises	Analyses Physico-chimiques	sur eluat					
etres realises	Analyses Physico-chimiques Résidu à sec	mg/l	<100	100			ent à NF EN ISO 15216
erres realises			<100 0,3	100 0,1	+/- 10		ent à NF EN ISO 15216 à ISO 10359-1, conform à EN 16192

Analyses Physico-chimiques sur éluat

١١.						
5	Résidu à sec	mg/l	<100	100		Equivalent à NF EN ISO 15216
g	Fluorures (F)	mg/l	0,3	0,1	+/- 10	Conforme à ISO 10359-1, conforme à EN 16192
5	Indice phénol	ma/l	<0.010	0.01		NEN-EN 16192

RvA L 005

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 20.06.2022 N° Client 35004955

RAPPORT D'ANALYSES

ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du symbole " *) ".

accrédités selon la norme

paramètres réalisés par AL-West BV sont

n° Cde 1165024 A2205-313_EPFLi_Combleux_sol

N° échant. 365373 Solide / Eluat

Spécification des échantillons S17 (0-1)

			Limite	Incert.	
	Unité	Résultat	Quant.	Résultat %	Méthode
Chlorures (CI)	mg/l	1,1	0,1	+/- 10	Conforme à ISO 15923-1
Sulfates (SO4)	mg/l	<5,0	5		Conforme à ISO 15923-1
COT	mg/l	3,0	1	+/- 10	conforme EN 16192
Métaux sur éluat					
Antimoine (Sb)	μg/I	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Arsenic (As)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Baryum (Ba)	μg/l	21	10	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Cadmium (Cd)	μg/l	<0,1	0,1		Conforme à EN-ISO 17294-2 (2004)
Chrome (Cr)	µg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)
Cuivre (Cu)	μg/l	7,7	2	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Mercure	μg/l	° <0,03	0,03		méthode interne (conforme NEN- EN-ISO 12846)
Molybdène (Mo)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Nickel (Ni)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Plomb (Pb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Sélénium (Se)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Zinc (Zn)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé.

Le calcul de l' incertitude de mesure analytique combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l' expression de l' incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordtest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d' élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance).

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Début des analyses: 10.06.2022 Fin des analyses: 17.06.2022

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

(Styl-

AL-West B.V. Mme Fatima-Zahra Saati, Tel. 33/380680132 Chargée relation clientèle

et/ou externalisés sont marqués du symbole " *) ".

Seuls les paramètres non

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

ENVISOL 2-4, rue Hector Berlioz 38110 LA TOUR DU PIN **FRANCE**

> 20.06.2022 Date N° Client 35004955

> > Máthada

RAPPORT D'ANALYSES

n° Cde 1165024 A2205-313_EPFLi_Combleux_sol

Lloitá

N° échant. 365374 Solide / Eluat

Date de validation 10.06.2022 Prélèvement 07.06.2022 Prélèvement par: Client Spécification des échantillons S4 (0-1)

		Office		Resultat	Quarit.	Resultat %	Methode
	Lixiviation						
Ĺ	Fraction >4mm (EN12457-2)	%	•	15,0	0,1		Selon norme lixiviation
	Masse brute Mh pour lixiviation *)	g	•	110	1		Selon norme lixiviation
	Lixiviation (EN 12457-2)		0				NF EN 12457-2
	Volume de lixiviant L ajouté pour l'extraction *)	ml		900	1		Selon norme lixiviation

Limite

Incert.

Prétraitement des échantillons

Masse échantillon total inférieure à 2 kg	kg	•	0,60	0		
Prétraitement de l'échantillon	-	•				Conforme à NEN-EN 16179
Broyeur à mâchoires		0				méthode interne
Matière sèche	%	0	82,8	0,01	+/- 1	NEN-EN 15934 ; EN12880

Calcul des Fractions solubles

Fraction soluble cumulé (var. L/S)	mg/kg Ms	2200	1000	Selon norme lixiviation
Antimoine cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
Arsenic cumulé (var. L/S)	mg/kg Ms	0,18	0,05	Selon norme lixiviation
Baryum cumulé (var. L/S)	mg/kg Ms	0 - 0,1	0,1	Selon norme lixiviation
Cadmium cumulé (var. L/S)	mg/kg Ms	0 - 0,001	0,001	Selon norme lixiviation
Chlorures cumulé (var. L/S)	mg/kg Ms	21	1	Selon norme lixiviation
Chrome cumulé (var. L/S)	mg/kg Ms	0,02	0,02	Selon norme lixiviation
COT cumulé (var. L/S)	mg/kg Ms	38	10	Selon norme lixiviation
Cuivre cumulé (var. L/S)	mg/kg Ms	0,08	0,02	Selon norme lixiviation
Fluorures cumulé (var. L/S)	mg/kg Ms	13	1	Selon norme lixiviation
Indice phénol cumulé (var. L/S)	mg/kg Ms	0 - 0,1	0,1	Selon norme lixiviation
Mercure cumulé (var. L/S)	mg/kg Ms	0 - 0,0003	0,0003	Selon norme lixiviation
Molybdène cumulé (var. L/S)	mg/kg Ms	0,17	0,05	Selon norme lixiviation
Nickel cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
Plomb cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
Sélénium cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
Sulfates cumulé (var. L/S)	mg/kg Ms	650	50	Selon norme lixiviation
Zinc cumulé (var. L/S)	mg/kg Ms	0 - 0,02	0,02	Selon norme lixiviation

		300			COOTI HOTTIC IIXIVIALIOTI
Prétraitement des échantille	ons				
Masse échantillon total inférieure à 2 kg	kg	° 0,60	0		
Prétraitement de l'échantillon		0			Conforme à NEN-EN 161
Broyeur à mâchoires		0			méthode interne
Matière sèche	%	° 82,8	0,01	+/- 1	NEN-EN 15934 ; EN12
Calcul des Fractions solubl	es				
Fraction soluble cumulé (var. L/S)	*) mg/kg Ms	2200	1000		Selon norme lixiviation
Antimoine cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Arsenic cumulé (var. L/S)	*) mg/kg Ms	0,18	0,05		Selon norme lixiviation
Baryum cumulé (var. L/S)	*) mg/kg Ms	0 - 0,1	0,1		Selon norme lixiviation
Cadmium cumulé (var. L/S)	*) mg/kg Ms	0 - 0,001	0,001		Selon norme lixiviation
Chlorures cumulé (var. L/S)	*) mg/kg Ms	21	1		Selon norme lixiviation
Chrome cumulé (var. L/S)	*) mg/kg Ms	0,02	0,02		Selon norme lixiviation
COT cumulé (var. L/S)	*) mg/kg Ms	38	10		Selon norme lixiviation
Cuivre cumulé (var. L/S)	*) mg/kg Ms	0,08	0,02		Selon norme lixiviation
Fluorures cumulé (var. L/S)	*) mg/kg Ms	13	1		Selon norme lixiviation
Indice phénol cumulé (var. L/S)	*) mg/kg Ms	0 - 0,1	0,1		Selon norme lixiviation
Mercure cumulé (var. L/S)	*) mg/kg Ms	0 - 0,0003	0,0003		Selon norme lixiviation
Molybdène cumulé (var. L/S)	*) mg/kg Ms	0,17	0,05		Selon norme lixiviation
Nickel cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Plomb cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Sélénium cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Sulfates cumulé (var. L/S)	*) mg/kg Ms	650	50		Selon norme lixiviation
Zinc cumulé (var. L/S)	*) mg/kg Ms	0 - 0,02	0,02		Selon norme lixiviation
Analyses Physico-chimique	es				
pH-H2O		° 9,4	0,1	+/- 10	Cf. NEN-ISO 10390 (sol uniquement)
COT Carbone Organique Total	mg/kg Ms	8100	1000	+/- 16	conforme ISO 10694 (20
Sulfates cumulé (var. L/S) Zinc cumulé (var. L/S) Analyses Physico-chimique pH-H2O COT Carbone Organique Total Prétraitement pour analyses		8100	1000	+/- 16	
					page 1 de

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Minéralisation à l'eau régale		0			NF-EN 16174; NF EN 13657 (déchets)
Métaux					
Arsenic (As)	mg/kg Ms	18	1	+/- 15	Conforme à EN-ISO 11885, EN 16174
Cadmium (Cd)	mg/kg Ms	0,1	0,1	+/- 21	Conforme à EN-ISO 11885, EN 16174
Chrome (Cr)	mg/kg Ms	43	0,2	+/- 12	Conforme à EN-ISO 11885, EN 16174
Cuivre (Cu)	mg/kg Ms	18	0,2	+/- 20	Conforme à EN-ISO 11885, EN 16174
Mercure (Hg)	mg/kg Ms	0,06	0,05	+/- 20	Conforme à ISO 16772 et EN 16174
Nickel (Ni)	mg/kg Ms	25	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Plomb (Pb)	mg/kg Ms	36	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Zinc (Zn)	mg/kg Ms	91	1	+/- 22	Conforme à EN-ISO 11885, EN 16174

	A 4*	-	(100)
Hydrocarbures	Aromatiques	Polycycliques	asor

Trydrocarbures Aromanques	i orycycniqui	c3 (100 <i>)</i>			
Naphtalène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Acénaphtylène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Acénaphtène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Fluorène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Phénanthrène	mg/kg Ms	0,24	0,05	+/- 20	équivalent à NF EN 16181
Anthracène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Fluoranthène	mg/kg Ms	0,40	0,05	+/- 17	équivalent à NF EN 16181
Pyrène	mg/kg Ms	0,36	0,05	+/- 19	équivalent à NF EN 16181
Benzo(a)anthracène	mg/kg Ms	0,22	0,05	+/- 14	équivalent à NF EN 16181
Chrysène	mg/kg Ms	0,27	0,05	+/- 14	équivalent à NF EN 16181
Benzo(b)fluoranthène	mg/kg Ms	0,12	0,05	+/- 12	équivalent à NF EN 16181
Benzo(k)fluoranthène	mg/kg Ms	0,12	0,05	+/- 14	équivalent à NF EN 16181
Benzo(a)pyrène	mg/kg Ms	0,22	0,05	+/- 14	équivalent à NF EN 16181
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Benzo(g,h,i)pérylène	mg/kg Ms	0,16	0,05	+/- 14	équivalent à NF EN 16181
Indéno(1,2,3-cd)pyrène	mg/kg Ms	0,19	0,05	+/- 17	équivalent à NF EN 16181
HAP (6 Borneff) - somme	mg/kg Ms	1,21			équivalent à NF EN 16181
Somme HAP (VROM)	mg/kg Ms	1,82 ^{x)}			équivalent à NF EN 16181
HAP (EPA) - somme	mg/kg Ms	2,30 ^{x)}			équivalent à NF EN 16181
Composés aramatiques					

RAPPORT D'ANALYSES					Date	20.06.202
RAPPORT D'ANALYSES					N° Client	3500495
n° Cde	116502/	A2205-313_I	EDEL: C	`omblouv c	ol.	
			EPFLI_C	ombleux_s	OI .	
N° échant.		Solide / Eluat				
Spécification des échantillons	S4 (0-1)					
Minéralisation à l'eau régale Métaux Arsenic (As) Cadmium (Cd) Chrome (Cr) Cuivre (Cu) Mercure (Hg) Nickel (Ni) Plomb (Pb) Zinc (Zn) Hydrocarbures Aromatiques Naphtalène	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode	
Minéralisation à l'eau régale	0				NF-EN 1	6174; NF EN 13657 (déchets)
Métaux					1	(decinete)
Arsenic (As)	mg/kg Ms	18	1	+/- 15	Conforme	à EN-ISO 11885, EN 16174
Cadmium (Cd)	mg/kg Ms	0,1	0,1	+/- 21	Conforme	à EN-ISO 11885, EN 16174
Chrome (Cr)	mg/kg Ms	43	0,2	+/- 12	Conforme	à EN-ISO 11885, EN 16174
Cuivre (Cu)	mg/kg Ms	18	0,2	+/- 20	Conforme	à EN-ISO 11885, EN 16174
Mercure (Hg)	mg/kg Ms	0,06	0,05	+/- 20	Conform	e à ISO 16772 et EN 16174
Nickel (Ni)	mg/kg Ms	25	0,5	+/- 11	Conforme	à EN-ISO 11885, EN
Plomb (Pb)	mg/kg Ms	36	0,5	+/- 11	Conforme	16174 à EN-ISO 11885, EN
Zinc (Zn)	mg/kg Ms	91	1	+/- 22	Conforme	16174 à EN-ISO 11885, EN
Hydrocarbures Aromatiques	Polycycliques (19	SO)				16174
Naphtalène	mg/kg Ms	<0,050	0,05		équivale	ent à NF EN 16181
Acénaphtylène	mg/kg Ms	<0,050	0,05			ent à NF EN 16181
Acénaphtène	mg/kg Ms	<0,050	0,05			ent à NF EN 16181
Fluorène	mg/kg Ms	<0,050	0,05		équivale	ent à NF EN 16181
Phénanthrène	mg/kg Ms	0,24	0,05	+/- 20	équivale	ent à NF EN 16181
Anthracène	mg/kg Ms	<0,050	0,05		équivale	ent à NF EN 16181
Fluoranthène	mg/kg Ms	0,40	0,05	+/- 17	équivale	ent à NF EN 16181
Pyrène	mg/kg Ms	0,36	0,05	+/- 19	équivale	ent à NF EN 16181
Benzo(a)anthracène	mg/kg Ms	0,22	0,05	+/- 14		ent à NF EN 16181
Chrysène	mg/kg Ms	0,27	0,05	+/- 14	équivale	ent à NF EN 16181
Benzo(b)fluoranthène	mg/kg Ms	0,12	0,05	+/- 12		ent à NF EN 16181
Benzo(k)fluoranthène	mg/kg Ms	0,12	0,05	+/- 14		ent à NF EN 16181
Benzo(a)pyrène	mg/kg Ms	0,22	0,05	+/- 14		ent à NF EN 16181
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,05			ent à NF EN 16181
Benzo(g,h,i)pérylène	mg/kg Ms	0,16		+/- 14		ent à NF EN 16181
Indéno(1,2,3-cd)pyrène	mg/kg Ms	0,19	0,05	+/- 17		ent à NF EN 16181
HAP (6 Borneff) - somme	mg/kg Ms	1,21				ent à NF EN 16181
Somme HAP (VROM)	mg/kg Ms	1,82 ×)				ent à NF EN 16181
HAP (EPA) - somme	mg/kg Ms	2,30 ^{x)}			équivale	ent à NF EN 16181
Composés aromatiques						
Benzène	mg/kg Ms	<0,050	0,05			SO 22155
Toluène	mg/kg Ms	<0,050	0,05			SO 22155
Ethylbenzène	mg/kg Ms	<0,050	0,05			SO 22155
m,p-Xylène	mg/kg Ms	<0,10	0,1			SO 22155
o-Xylène	mg/kg Ms	<0,050	0,05			SO 22155
Toluène Ethylbenzène m,p-Xylène o-Xylène Naphtalène Somme Xylènes BTEX total	mg/kg Ms	<0,10	0,1			SO 22155
Somme Xylènes	mg/kg Ms	n.d.				SO 22155
BTEX total	*) mg/kg Ms	n.d.				SO 22155

COHV

	CONV				
πèt	Chlorure de Vinyle	mg/kg Ms	<0,02	0,02	ISO 22155
īai	Dichlorométhane	mg/kg Ms	<0,05	0,05	ISO 22155
SDS	-				
ě					page 2 de

RvA L 005

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Trichlorométhane	mg/kg Ms	<0,05	0,05		ISO 22155
Tétrachlorométhane	mg/kg Ms	<0,05	0,05		ISO 22155
Trichloroéthylène	mg/kg Ms	<0,05	0,05		ISO 22155
Tétrachloroéthylène	mg/kg Ms	<0,05	0,05		ISO 22155
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
1,1,2-Trichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
1,1-Dichloroéthane	mg/kg Ms	<0,10	0,1		ISO 22155
1,2-Dichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	0,025		ISO 22155
1,1-Dichloroéthylène	mg/kg Ms	<0,10	0,1		ISO 22155
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	0,025		ISO 22155
Somme cis/trans-1,2-Dichloroéthylènes	mg/kg Ms	n.d.			ISO 22155
Hydrocarbures totaux (ISO)					
Fraction aliphatique C5-C6	mg/kg Ms	<0.20	0.2		conforme à NEN-EN-ISO 16558-1

Try ar ocal bar oc totaax (100)					
Fraction aliphatique C5-C6	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Fraction C5-C10	mg/kg Ms	<1,0 ^{x)}	1		conforme à NEN-EN-ISO 16558-1
Fraction >C6-C8	mg/kg Ms	<0,40 x)	0,4		conforme à NEN-EN-ISO 16558-1
Fraction C8-C10	mg/kg Ms	<0,40 x)	0,4		conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Hydrocarbures totaux C10-C40	mg/kg Ms	66,3	20	+/- 21	ISO 16703
Fraction C10-C12	mg/kg Ms	<4,0	4		ISO 16703
Fraction C12-C16	mg/kg Ms	<4,0	4		ISO 16703
Fraction C16-C20	mg/kg Ms	4,0	2	+/- 21	ISO 16703
Fraction C20-C24	mg/kg Ms	6,9	2	+/- 21	ISO 16703
Fraction C24-C28	mg/kg Ms	12,1	2	+/- 21	ISO 16703
Fraction C28-C32	mg/kg Ms	17	2	+/- 21	ISO 16703
Fraction C32-C36	mg/kg Ms	15,8	2	+/- 21	ISO 16703
Fraction C36-C40	mg/kg Ms	7,9	2	+/- 21	ISO 16703

Polychlorobiphényles

1 Olyonio obipinenyies								
Somme 6 PCB	mg/kg Ms	0,27 x)		NEN-EN 16167				
Somme 7 PCB (Ballschmiter)	mg/kg Ms	0,29 x)		NEN-EN 16167				
PCB (28)	mg/kg Ms	<0,001 0,001		NEN-EN 16167				
PCB (52)	mg/kg Ms	0,008 0,001	+/- 33	NEN-EN 16167				
PCB (101)	mg/kg Ms	0,037 0,001	+/- 34	NEN-EN 16167				
PCB (118)	mg/kg Ms	0,013 0,001	+/- 19	NEN-EN 16167				
PCB (138)	mg/kg Ms	0,072 0,001	+/- 30	NEN-EN 16167				
PCB (153)	mg/kg Ms	0,087 0,001	+/- 22	NEN-EN 16167				
PCB (180)	mg/kg Ms	0,068 0,001	+/- 12	NEN-EN 16167				

Analyses sur éluat après lixiviation

					Date N° Client	20.06.202 3500495
RAPPORT D'ANALYSES					14 Olicit	3300433
n° Cde	1165024 A	\2205-313_E	PFLi_C	ombleux_s	ol	
N° échant.	365374 Sc	olide / Eluat				
Spécification des échantillons	S4 (0-1)					
	- · (- · ·)		Limite	Incert.		
	Unité	Résultat	Quant.	Résultat %	Méthode	
Trichlorométhane	mg/kg Ms	<0,05	0,05			ISO 22155
Tétrachlorométhane	mg/kg Ms	<0,05	0,05			ISO 22155
Trichloroéthylène	mg/kg Ms	<0,05	0,05			ISO 22155
Tétrachloroéthylène	mg/kg Ms	<0,05	0,05			ISO 22155
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	0,05			ISO 22155
1,1,2-Trichloroéthane	mg/kg Ms	<0,05	0,05			ISO 22155
1,1-Dichloroéthane	mg/kg Ms	<0,10	0,1			ISO 22155
1,2-Dichloroéthane	mg/kg Ms	<0,05	0,05			ISO 22155
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	0,025			ISO 22155
1,1-Dichloroéthylène	mg/kg Ms	<0,10	0,1			ISO 22155
Trans-1,2-Dichloroéthylène Somme cis/trans-1,2-Dichloroéthylènes	mg/kg Ms mg/kg Ms	<0,025 n.d.	0,025			ISO 22155 ISO 22155
<u> </u>	ilig/kg ivis	II.u.				130 22 133
Hydrocarbures totaux (ISO)		0.00			a a m f a m m a	À NEN EN ICO 4CEE
Fraction aliphatique C5-C6	mg/kg Ms	<0,20	0,2			à NEN-EN-ISO 16558-1 à NEN-EN-ISO 16558-1
Fraction C5-C10	mg/kg Ms mg/kg Ms	<1,0 ^{x)}	0,4			à NEN-EN-ISO 16558-
Fraction >C6-C8 Fraction C8-C10	mg/kg Ms	<0,40 ^{x)}	0,4			à NEN-EN-ISO 16558-
Fraction co-c to Fraction aliphatique >C6-C8	mg/kg Ms	<0,40	0,4			à NEN-EN-ISO 16558-1
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	0,2			à NEN-EN-ISO 16558-
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	0,2			à NEN-EN-ISO 16558-1
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	0,2		conforme	à NEN-EN-ISO 16558-
Hydrocarbures totaux C10-C40	mg/kg Ms	66,3	20	+/- 21		ISO 16703
	*) mg/kg Ms	<4,0	4			ISO 16703
	*) mg/kg Ms	<4,0	4			ISO 16703
Fraction C16-C20	*) mg/kg Ms	4,0	2	+/- 21		ISO 16703
Fraction C20-C24	*) mg/kg Ms	6,9	2	+/- 21		ISO 16703
	*) mg/kg Ms	12,1	2	+/- 21		ISO 16703
	*) mg/kg Ms	17	2	+/- 21		ISO 16703
	*) mg/kg Ms	15,8	2	+/- 21		ISO 16703
Fraction C36-C40	*) mg/kg Ms	7,9	2	+/- 21		ISO 16703
Polychlorobiphényles						
Somme 6 PCB	mg/kg Ms	0,27 ×)				EN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	0,29 x)				EN-EN 16167
PCB (28)	mg/kg Ms	<0,001	0,001			EN-EN 16167
PCB (52)	mg/kg Ms	0,008	0,001	+/- 33		EN-EN 16167
PCB (101)	mg/kg Ms	0,037	0,001	+/- 34		EN-EN 16167
PCB (118)	mg/kg Ms	0,013	0,001	+/- 19		EN-EN 16167
PCB (138)	mg/kg Ms	0,072	0,001	+/- 30		EN-EN 16167
PCB (153)	mg/kg Ms	0,087 0,068	0,001	+/- 22 +/- 12		EN-EN 16167
PCB (180)	mg/kg Ms	0,000	0,001	+/- 12	IN	EN-EN 16167
Analyses sur éluat après lixiv					1	
L/S cumulé	ml/g	10,0	0,1	/ 10		n norme lixiviation
Conductivité électrique	μS/cm	250	5	+/- 10		n norme lixiviation
pH Tompératura	°C	10,2	0	+/- 5		n norme lixiviation
Température		19,9	0		Selo	n norme lixiviation
Analyses Physico-chimiques		220	100	+/- 22	1	ent à NF EN ISO 15216
Résidu à sec	mg/l					

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 20.06.2022 N° Client 35004955

RAPPORT D'ANALYSES

n° Cde 1165024 A2205-313_EPFLi_Combleux_sol

N° échant. 365374 Solide / Eluat

Spécification des échantillons S4 (0-1)

Métaux sur éluat					
СОТ	mg/l	3,8	1	+/- 10	conforme EN 16192
Sulfates (SO4)	mg/l	65	5	+/- 10	Conforme à ISO 15923-1
Chlorures (CI)	mg/l	2,1	0,1	+/- 10	Conforme à ISO 15923-1
Indice phénol	mg/l	<0,010	0,01		NEN-EN 16192
Fluorures (F)	mg/l	1,3	0,1	+/- 10	Conforme à ISO 10359-1, conforme à EN 16192
	Unité	Résultat	Quant.	Résultat %	Méthode

Métaux sur éluat					
Antimoine (Sb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Arsenic (As)	μg/l	18	5	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Baryum (Ba)	μg/l	<10	10		Conforme à EN-ISO 17294-2 (2004)
Cadmium (Cd)	μg/l	<0,1	0,1		Conforme à EN-ISO 17294-2 (2004)
Chrome (Cr)	μg/l	2,2	2	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Cuivre (Cu)	μg/l	8,0	2	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Mercure	μg/l	° <0,03	0,03		méthode interne (conforme NEN- EN-ISO 12846)
Molybdène (Mo)	μg/l	17	5	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Nickel (Ni)	μg/I	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Plomb (Pb)	μg/I	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Sélénium (Se)	μg/I	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Zinc (Zn)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé. Le calcul de l' incertitude de mesure analytique combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l' expression de l' incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordtest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d' élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance).

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Début des analyses: 10.06.2022 Fin des analysés: 17.06.2022

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

sont es paramètres réalisés par AL-West

la norme

EN ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du symbole " *)

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110 e-Mail: info@al-west.nl, www.al-west.nl

Date 20.06.2022 N° Client 35004955

RAPPORT D'ANALYSES

n° Cde 1165024 A2205-313_EPFLi_Combleux_sol N° échant. **365374** Solide / Eluat

Spécification des échantillons

S4 (0-1)

AL-West B.V. Mme Fatima-Zahra Saati, Tel. 33/380680132 Chargée relation clientèle

accrédités et/ou externalisés sont marqués du symbole " *) ".

es paramètres réalisés par AL-West BV sont accrédités selon la norme EN ISO/IEC 17025;2017. Seuls les paramètres non

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

ENVISOL 2-4, rue Hector Berlioz 38110 LA TOUR DU PIN **FRANCE**

> Date 20.06.2022 N° Client 35004955

RAPPORT D'ANALYSES

n° Cde 1165024 A2205-313_EPFLi_Combleux_sol

N° échant. 365375 Solide / Eluat

Date de validation 10.06.2022 Prélèvement 07.06.2022 Prélèvement par: Client Spécification des échantillons S12 (1-2)

	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Lixiviation					
Fraction >4mm (EN12457-2)	%	° <0,1	0,1		Selon norme lixiviation
Masse brute Mh pour lixiviation	*) g	° 100	1		Selon norme lixiviation
Lixiviation (EN 12457-2)	3	0	-		NF EN 12457-2
Volume de lixiviant L ajouté pour l'extraction	*) ml	900	1		Selon norme lixiviation
Prétraitement des échantillor	ns				
Masse échantillon total inférieure à 2 kg	kg	° 0,59	0		
Prétraitement de l'échantillon	- I-g	0			Conforme à NEN-EN 16179
Matière sèche	%	° 90,7	0,01	+/- 1	NEN-EN 15934 ; EN12880
Calcul des Fractions solubles	 S				
Fraction soluble cumulé (var. L/S)	*) mg/kg Ms	0 - 1000	1000		Selon norme lixiviation
Antimoine cumulé (var. L/S)	*) mg/kg Ms	0 - 0.05	0,05		Selon norme lixiviation
Arsenic cumulé (var. L/S)	*) mg/kg Ms	0,06	0,05		Selon norme lixiviation
Baryum cumulé (var. L/S)	*) mg/kg Ms	0 - 0,1	0,1		Selon norme lixiviation
Cadmium cumulé (var. L/S)	*) mg/kg Ms	0 - 0,001	0,001		Selon norme lixiviation
Chlorures cumulé (var. L/S)	*) mg/kg Ms	11	1		Selon norme lixiviation
Chrome cumulé (var. L/S)	*) mg/kg Ms	0 - 0,02	0,02		Selon norme lixiviation
COT cumulé (var. L/S)	*) mg/kg Ms	15	10		Selon norme lixiviation
Cuivre cumulé (var. L/S)	*) mg/kg Ms	0,03	0,02		Selon norme lixiviation
Fluorures cumulé (var. L/S)	*) mg/kg Ms	3,0	1		Selon norme lixiviation
Indice phénol cumulé (var. L/S)	*) mg/kg Ms	0 - 0,1	0,1		Selon norme lixiviation
Mercure cumulé (var. L/S)	*) mg/kg Ms	0 - 0,0003	0,0003		Selon norme lixiviation
Molybdène cumulé (var. L/S)	*) mg/kg Ms	0,07	0,05		Selon norme lixiviation
Nickel cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Plomb cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Sélénium cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Sulfates cumulé (var. L/S)	*) mg/kg Ms	190	50		Selon norme lixiviation
Zinc cumulé (var. L/S)	*) mg/kg Ms	0 - 0,02	0,02		Selon norme lixiviation
Analyses Physico-chimiques					

Analyses Physico-chimiques

pH-H2O		° 8,4	0,1	+/- 10	Cf. NEN-ISO 10390 (sol uniquement)
COT Carbone Organique Total	mg/kg Ms	5100	1000	+/- 16	conforme ISO 10694 (2008)

Prétraitement pour analyses des métaux

NF-EN 16174; NF EN 13657 Minéralisation à l'eau régale (déchets)

page 1 de 4

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Métaux					
Arsenic (As)	mg/kg Ms	15	1	+/- 15	Conforme à EN-ISO 11885, EN 16174
Cadmium (Cd)	mg/kg Ms	0,1	0,1	+/- 21	Conforme à EN-ISO 11885, EN 16174
Chrome (Cr)	mg/kg Ms	15	0,2	+/- 12	Conforme à EN-ISO 11885, EN 16174
Cuivre (Cu)	mg/kg Ms	7,9	0,2	+/- 20	Conforme à EN-ISO 11885, EN 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conforme à ISO 16772 et EN 16174
Nickel (Ni)	mg/kg Ms	9,8	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Plomb (Pb)	mg/kg Ms	14	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Zinc (Zn)	mg/kg Ms	31	1	+/- 22	Conforme à EN-ISO 11885, EN 16174
Hydrocarbures Aroma	ntiques Polycycliques (I	SO)			
Naphtalène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Acénaphtylène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181

					Date N° Client	20.06.20 350049
RAPPORT D'ANALYSES					TV OHOTIC	00004
n° Cde	1165024	A2205-313_E	EPFLi_C	combleux_sc	ol	
N° échant.		Solide / Eluat				
Spécification des échantillons	S12 (1-2					
opecinication des conantinons	012 (1-2	,	Limite	Incert.		
	Unité	Résultat	Quant.	Résultat %	Méthode	
Métaux						
Arsenic (As)	mg/kg Ms	15	1	+/- 15	Conforme	à EN-ISO 11885,
					Conformo	16174 à EN-ISO 11885,
Cadmium (Cd)	mg/kg Ms	0,1	0,1	+/- 21		16174
Chrome (Cr)	mg/kg Ms	15	0,2	+/- 12	Conforme	à EN-ISO 11885, 16174
Cuivre (Cu)	mg/kg Ms	7,9	0,2	+/- 20	Conforme	à EN-ISO 11885,
		·		.,	Conform	16174 e à ISO 16772 et E
Mercure (Hg)	mg/kg Ms	<0,05	0,05			16174
Nickel (Ni)	mg/kg Ms	9,8	0,5	+/- 11	Conforme	à EN-ISO 11885,
Plomb (Pb)	mg/kg Ms	14	0,5	+/- 11	Conforme	16174 à EN-ISO 11885,
<u> </u>					0	16174
Zinc (Zn)	mg/kg Ms	31	1	+/- 22	Conforme	à EN-ISO 11885, 16174
Hydrocarbures Aromatiques	Polycycliques (IS	SO)				
Naphtalène	mg/kg Ms	<0,050	0,05		équivale	ent à NF EN 161
Acénaphtylène	mg/kg Ms	<0,050	0,05			ent à NF EN 161
Acénaphtène	mg/kg Ms	<0,050	0,05		équivale	ent à NF EN 161
Fluorène	mg/kg Ms	<0,050	0,05		équivale	ent à NF EN 161
Phénanthrène	mg/kg Ms	<0,050	0,05			ent à NF EN 161
Anthracène	mg/kg Ms	<0,050	0,05			ent à NF EN 161
Fluoranthène	mg/kg Ms	<0,050	0,05			ent à NF EN 161
Pyrène Panzo(a)anthragène	mg/kg Ms mg/kg Ms	<0,050 <0,050	0,05			ent à NF EN 161 ent à NF EN 161
Benzo(a)anthracène Chrysène	mg/kg Ms	<0,050	0,05 0,05			ent à NF EN 161
Benzo(b)fluoranthène	mg/kg Ms	<0,050	0,05			ent à NF EN 161
Benzo(k)fluoranthène	mg/kg Ms	<0,050	0,05			ent à NF EN 161
Benzo(a)pyrène	mg/kg Ms	<0,050	0,05			ent à NF EN 161
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,05		équivale	ent à NF EN 161
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	0,05			ent à NF EN 161
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	0,05			ent à NF EN 161
HAP (6 Borneff) - somme	mg/kg Ms	n.d.				ent à NF EN 161
Somme HAP (VROM)	mg/kg Ms	n.d.				ent à NF EN 161
HAP (EPA) - somme	mg/kg Ms	n.d.			equivale	ent à NF EN 161
Composés aromatiques						
Benzène	mg/kg Ms	<0,050	0,05			SO 22155
Toluène	mg/kg Ms	<0,050	0,05			SO 22155
Ethylbenzène m,p-Xylène	mg/kg Ms mg/kg Ms	<0,050 <0,10	0,05 0,1			SO 22155 SO 22155
nı,p-xylene o-Xylène	mg/kg Ms	<0,10	0,05			SO 22155 SO 22155
Naphtalène	mg/kg Ms	<0,10	0,03			SO 22155
Somme Xylènes	mg/kg Ms	n.d.	٠, ١			SO 22155
BTEX total	*) mg/kg Ms	n.d.				SO 22155
COHV						
Chlorure de Vinyle	mg/kg Ms	<0,02	0,02		I	SO 22155
Dichlorométhane	mg/kg Ms	<0,05	0,05			SO 22155
Trichlorométhane	mg/kg Ms	<0,05	0,05		I	SO 22155
Tétrachlorométhane	mg/kg Ms	<0,05	0,05			SO 22155

_	,			
Com	INOSES	aron	natiques	

Composés aromatiques				
Benzène	mg/kg Ms	<0,050	0,05	ISO 22155
Toluène	mg/kg Ms	<0,050	0,05	ISO 22155
Ethylbenzène	mg/kg Ms	<0,050	0,05	ISO 22155
m,p-Xylène	mg/kg Ms	<0,10	0,1	ISO 22155
o-Xylène	mg/kg Ms	<0,050	0,05	ISO 22155
Naphtalène	mg/kg Ms	<0,10	0,1	ISO 22155
Somme Xylènes	mg/kg Ms	n.d.		ISO 22155
BTEX total	mg/kg Ms	n.d.		ISO 22155

COHV

ĸ	33.11				
_	Chlorure de Vinyle	mg/kg Ms	<0,02	0,02	ISO 22155
ב ב	Dichlorométhane	mg/kg Ms	<0,05	0,05	ISO 22155
=	Trichlorométhane	mg/kg Ms	<0,05	0,05	ISO 22155
<u>8</u>	Tétrachlorométhane	mg/kg Ms	<0,05	0,05	ISO 22155

RvA L 005

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

			Limite	Incert.	
	Unité	Résultat	Quant.	Résultat %	Méthode
Trichloroéthylène	mg/kg Ms	<0,05	0,05		ISO 22155
Tétrachloroéthylène	mg/kg Ms	<0,05	0,05		ISO 22155
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
1,1,2-Trichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
1,1-Dichloroéthane	mg/kg Ms	<0,10	0,1		ISO 22155
1,2-Dichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	0,025		ISO 22155
1,1-Dichloroéthylène	mg/kg Ms	<0,10	0,1		ISO 22155
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	0,025		ISO 22155
Somme cis/trans-1,2-Dichloroéthylènes	mg/kg Ms	n.d.			ISO 22155

Hydrocarbures to	otaux (ISO)
------------------	-------------

nyurocarbures totaux (130)					
Fraction aliphatique C5-C6	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Fraction C5-C10	mg/kg Ms	<1,0 x)	1		conforme à NEN-EN-ISO 16558-1
Fraction >C6-C8	mg/kg Ms	<0,40 x)	0,4		conforme à NEN-EN-ISO 16558-1
Fraction C8-C10	mg/kg Ms	<0,40 x)	0,4		conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	20		ISO 16703
Fraction C10-C12	mg/kg Ms	<4,0	4		ISO 16703
Fraction C12-C16	mg/kg Ms	<4,0	4		ISO 16703
Fraction C16-C20	mg/kg Ms	<2,0	2		ISO 16703
Fraction C20-C24	mg/kg Ms	<2,0	2		ISO 16703
Fraction C24-C28	mg/kg Ms	<2,0	2		ISO 16703
Fraction C28-C32	mg/kg Ms	3,5	2	+/- 21	ISO 16703
Fraction C32-C36	mg/kg Ms	3,4	2	+/- 21	ISO 16703
Fraction C36-C40	mg/kg Ms	<2,0	2		ISO 16703

Polychlorobiphényles

Somme 6 PCB	mg/kg Ms	0,0070 x)			NEN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	0,0070 x)			NEN-EN 16167
PCB (28)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
PCB (52)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
PCB (101)	mg/kg Ms	0,001	0,001	+/- 34	NEN-EN 16167
PCB (118)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
PCB (138)	mg/kg Ms	0,002	0,001	+/- 30	NEN-EN 16167
PCB (153)	mg/kg Ms	0,002	0,001	+/- 22	NEN-EN 16167
PCB (180)	mg/kg Ms	0,002	0,001	+/- 12	NEN-EN 16167

Analyses sur éluat après lixiviation

					Date	20.06.202
DARRORT DIAMAL VOCO					N° Client	3500495
RAPPORT D'ANALYSES	44050	NA A0005 040 5	-DEL: 0		-1	
n° Cde		24 A2205-313_E	PFLI_C	ombieux_s	Ol	
N° échant.		Solide / Eluat				
Spécification des échantillons	S12 (1	-2)				
	11-97	District	Limite	Incert.	NA Colorada	
	Unité	Résultat	Quant.	Résultat %	Méthode	
Trichloroéthylène	mg/kg Ms	<0,05	0,05			ISO 22155
Tétrachloroéthylène	mg/kg Ms	<0,05	0,05			ISO 22155
1,1,1-Trichloroéthane 1,1,2-Trichloroéthane	mg/kg Ms mg/kg Ms	<0,05	0,05			ISO 22155 ISO 22155
1,1-Dichloroéthane	mg/kg Ms	<0,05 <0,10	0,05 0,1			ISO 22155
1,2-Dichloroéthane	mg/kg Ms	<0,10	0,05			ISO 22155
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	0,025			ISO 22155
1,1-Dichloroéthylène	mg/kg Ms	<0,10	0,1			ISO 22155
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	0,025			ISO 22155
Somme cis/trans-1,2-Dichloroéthylènes	mg/kg Ms	n.d.	,			ISO 22155
Hydrocarbures totaux (ISO)						
Fraction aliphatique C5-C6	mg/kg Ms	<0,20	0,2		conforme	à NEN-EN-ISO 16558-
Fraction C5-C10	mg/kg Ms	<1,0 ^{x)}	1		conforme	à NEN-EN-ISO 16558-
Fraction >C6-C8	mg/kg Ms	<0,40 x)	0,4		conforme	à NEN-EN-ISO 16558-
Fraction C8-C10	mg/kg Ms	<0,40 ×)	0,4			à NEN-EN-ISO 16558-
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	0,2			à NEN-EN-ISO 16558-
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	0,2			à NEN-EN-ISO 16558-
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	0,2			à NEN-EN-ISO 16558-
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	0,2		conforme	à NEN-EN-ISO 16558-
Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	20			ISO 16703
Fraction C10-C12	*) mg/kg Ms *) mg/kg Ms	<4,0	4			ISO 16703
Fraction C12-C16 Fraction C16-C20	*) mg/kg Ms	<4,0 <2,0	<u>4</u> 2			ISO 16703 ISO 16703
Fraction C20-C24	*) mg/kg Ms	<2,0 <2,0	2			ISO 16703
Fraction C24-C28	*) mg/kg Ms	<2,0	2			ISO 16703
Fraction C28-C32	*) mg/kg Ms	3,5	2	+/- 21		ISO 16703
Fraction C32-C36	*) mg/kg Ms	3,4	2	+/- 21		ISO 16703
Fraction C36-C40	*) mg/kg Ms	<2,0	2	.,		ISO 16703
Polychlorobiphényles		,-,				
Somme 6 PCB	mg/kg Ms	0,0070 x)			N	EN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	0,0070 x)			<u> </u>	EN-EN 16167
PCB (28)	mg/kg Ms	<0,001	0,001			EN-EN 16167
PCB (52)	mg/kg Ms	<0,001	0,001			EN-EN 16167
PCB (101)	mg/kg Ms	0,001	0,001	+/- 34		EN-EN 16167
PCB (118)	mg/kg Ms	<0,001	0,001		N	EN-EN 16167
PCB (138)	mg/kg Ms	0,002	0,001	+/- 30		EN-EN 16167
PCB (153)	mg/kg Ms	0,002	0,001	+/- 22		EN-EN 16167
PCB (180)	mg/kg Ms	0,002	0,001	+/- 12	N	EN-EN 16167
Analyses sur éluat après lixi	viation					
L/S cumulé	ml/g	10,0	0,1		Selo	n norme lixiviation
Conductivité électrique	μS/cm	120	5	+/- 10		n norme lixiviation
рН		8,7	0	+/- 5		n norme lixiviation
Température	°C	19,9	0		Selo	n norme lixiviation
Analyses Physico-chimiques	s sur éluat					
Résidu à sec	mg/l	<100	100			ent à NF EN ISO 15216
Fluorures (F)	mg/l	0,3	0,1	+/- 10	Conforme	à ISO 10359-1, conform à EN 16192

Analyses Physico-chimiques sur éluat

ppa. Marc van Gelder Dr. Paul Wimmer

5	Résidu à sec	mg/l	<100	100		Equivalent à NF EN ISO 15216
	Fluorures (F)	mg/l	0,3	0,1	+/- 10	Conforme à ISO 10359-1, conforme à EN 16192
3	Indice phénol	ma/l	<0.010	0.01		NEN-EN 16192

page 3 de 4 **RvA** L 005

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 20.06.2022 N° Client 35004955

RAPPORT D'ANALYSES

ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du symbole " *) ".

accrédités selon la norme

paramètres réalisés par AL-West BV sont

n° Cde 1165024 A2205-313_EPFLi_Combleux_sol

N° échant. 365375 Solide / Eluat

Spécification des échantillons S12 (1-2)

·	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Chlorures (CI)	mg/l	1,1	0,1	+/- 10	Conforme à ISO 15923-1
Sulfates (SO4)	mg/l	19	5	+/- 10	Conforme à ISO 15923-1
СОТ	mg/l	1,5	1	+/- 10	conforme EN 16192
Métaux sur éluat					
Antimoine (Sb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Arsenic (As)	μg/l	6,3	5	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Baryum (Ba)	μg/l	<10	10		Conforme à EN-ISO 17294-2 (2004)
Cadmium (Cd)	μg/l	<0,1	0,1		Conforme à EN-ISO 17294-2 (2004)
Chrome (Cr)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)
Cuivre (Cu)	μg/l	2,6	2	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Mercure	μg/l	° <0,03	0,03		méthode interne (conforme NEN- EN-ISO 12846)
Molybdène (Mo)	μg/l	7,3	5	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Nickel (Ni)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Plomb (Pb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Sélénium (Se)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Zinc (Zn)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé.

Le calcul de l' incertitude de mesure analytique combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l' expression de l' incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordtest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d' élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance).

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Début des analyses: 10.06.2022 Fin des analyses: 17.06.2022

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

(Styl-

AL-West B.V. Mme Fatima-Zahra Saati, Tel. 33/380680132 Chargée relation clientèle

accrédités et/ou externalisés sont marqués du symbole " *) ".

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110 e-Mail: info@al-west.nl, www.al-west.nl

ENVISOL 2-4, rue Hector Berlioz 38110 LA TOUR DU PIN **FRANCE**

> Date 20.06.2022 N° Client 35004955

RAPPORT D'ANALYSES

n° Cde 1165024 A2205-313_EPFLi_Combleux_sol

N° échant. 365376 Solide / Eluat

Date de validation 10.06.2022 Prélèvement 07.06.2022 Prélèvement par: Client Spécification des échantillons S12 (3-4)

	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
	Office	Nesullal	Quant.	Nesulial /0	ivieti lode
Lixiviation					
Fraction >4mm (EN12457-2)	%	° 4,1	0,1		Selon norme lixiviation
Masse brute Mh pour lixiviation	*) g	° 100	1		Selon norme lixiviation
Lixiviation (EN 12457-2)		0			NF EN 12457-2
Volume de lixiviant L ajouté pour l'extracti	ion *) ml	900	1		Selon norme lixiviation
Prétraitement des échantill	ons				
Masse échantillon total inférieure à 2 kg	kg	° 0,69	0		
Prétraitement de l'échantillon		0			Conforme à NEN-EN 161
Matière sèche	%	° 89,5	0,01	+/- 1	NEN-EN 15934 ; EN128
Calcul des Fractions solub	les				
Fraction soluble cumulé (var. L/S)	*) mg/kg Ms	0 - 1000	1000		Selon norme lixiviation
Antimoine cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Arsenic cumulé (var. L/S)	*) mg/kg Ms	0,05	0,05		Selon norme lixiviation
Baryum cumulé (var. L/S)	*) mg/kg Ms	0,12	0,1		Selon norme lixiviation
Cadmium cumulé (var. L/S)	*) mg/kg Ms	0 - 0,001	0,001		Selon norme lixiviation
Chlorures cumulé (var. L/S)	*) mg/kg Ms	11	1		Selon norme lixiviation
Chrome cumulé (var. L/S)	*) mg/kg Ms	0 - 0,02	0,02		Selon norme lixiviation
COT cumulé (var. L/S)	*) mg/kg Ms	11	10		Selon norme lixiviation
Cuivre cumulé (var. L/S)	*) mg/kg Ms	0,04	0,02		Selon norme lixiviation
Fluorures cumulé (var. L/S)	*) mg/kg Ms	2,0	1		Selon norme lixiviation
Indice phénol cumulé (var. L/S)	*) mg/kg Ms	0 - 0,1	0,1		Selon norme lixiviation
Mercure cumulé (var. L/S)	*) mg/kg Ms	0 - 0,0003	0,0003		Selon norme lixiviation
Molybdène cumulé (var. L/S)	*) mg/kg Ms	0,14	0,05		Selon norme lixiviation
Nickel cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Plomb cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Sélénium cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Sulfates cumulé (var. L/S)	*) mg/kg Ms	110	50		Selon norme lixiviation
Zinc cumulé (var. L/S)	*) mg/kg Ms	0,02	0,02		Selon norme lixiviation
Analyses Physico-chimiqu	es				
pH-H2O		° 8,7	0,1	+/- 10	Cf. NEN-ISO 10390 (sol uniquement)
COT Carbone Organique Total	mg/kg Ms	3600	1000	+/- 16	conforme ISO 10694 (200
Prétraitement pour analyse	s des métaux				
Minéralisation à l'eau régale		0			NF-EN 16174; NF EN 1365 (déchets)

Analy	ses Ph	ysico-cł	nimiques
-------	--------	----------	----------

g pH-H2O		° 8,7	0,1	+/- 10	Cf. NEN-ISO 10390 (sol uniquement)
COT Carbone Organique Total	mg/kg Ms	3600	1000	+/- 16	conforme ISO 10694 (2008)

ppa. Marc van Gelder Dr. Paul Wimmer

page 1 de 4

AL-West B.V.
Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 20.06.2022 N° Client 35004955

RAPPORT D'ANALYSES

n° Cde 1165024 A2205-313_EPFLi_Combleux_sol

N° échant. 365376 Solide / Eluat

Spécification des échantillons S12 (3-4)

•	`	,			
	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Métaux					
Arsenic (As)	mg/kg Ms	10	1	+/- 15	Conforme à EN-ISO 11885, EN 16174
Cadmium (Cd)	mg/kg Ms	<0,1	0,1		Conforme à EN-ISO 11885, EN 16174
Chrome (Cr)	mg/kg Ms	16	0,2	+/- 12	Conforme à EN-ISO 11885, EN 16174
Cuivre (Cu)	mg/kg Ms	7,7	0,2	+/- 20	Conforme à EN-ISO 11885, EN 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conforme à ISO 16772 et EN 16174
Nickel (Ni)	mg/kg Ms	13	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Plomb (Pb)	mg/kg Ms	14	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Zinc (Zn)	mg/kg Ms	30	1	+/- 22	Conforme à EN-ISO 11885, EN 16174
Hydrocarbures Aroma	tiques Polycycliques (I	SO)			
Naphtalène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Acénaphtylène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Acénaphtène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
[]		0.050	0.05		facilitate A NIC EN 40404

` ,				16174
Hydrocarbures Aromatique	es Polycycliques (I	SO)		
Naphtalène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Acénaphtylène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Acénaphtène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Fluorène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Phénanthrène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Anthracène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Fluoranthène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Pyrène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Benzo(a)anthracène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Chrysène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Benzo(b)fluoranthène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Benzo(k)fluoranthène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Benzo(a)pyrène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
HAP (6 Borneff) - somme	mg/kg Ms	n.d.		équivalent à NF EN 16181
Somme HAP (VROM)	mg/kg Ms	n.d.		équivalent à NF EN 16181
HAP (EPA) - somme	mg/kg Ms	n.d.		équivalent à NF EN 16181
Composés aromatiques				

_	,		
Com	nnses	aron	natiques

ď	Composes aromanques				
Ĕ	Benzène	mg/kg Ms	<0,050	0,05	ISO 22155
ń	Toluène	mg/kg Ms	<0,050	0,05	ISO 22155
2	Ethylbenzène	mg/kg Ms	<0,050	0,05	ISO 22155
Š	m,p-Xylène	mg/kg Ms	<0,10	0,1	ISO 22155
>	o-Xylène	mg/kg Ms	<0,050	0,05	ISO 22155
ζ	Naphtalène	mg/kg Ms	<0,10	0,1	ISO 22155
ğ	Somme Xylènes	mg/kg Ms	n.d.		ISO 22155
20	BTEX total	mg/kg Ms	n.d.		ISO 22155
מ					

COHV

Les paramètres réalisés par AL-West BV sont accrédités selon la norme EN ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du symbole " *) ".

ĸ	00.11				
_	Chlorure de Vinyle	mg/kg Ms	<0,02	0,02	ISO 22155
ב ב	Dichlorométhane	mg/kg Ms	<0,05	0,05	ISO 22155
=	Trichlorométhane	mg/kg Ms	<0,05	0,05	ISO 22155
ם ם	Tétrachlorométhane	mg/kg Ms	<0,05	0,05	ISO 22155

RvA L 005

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Trichloroéthylène	mg/kg Ms	<0,05	0,05		ISO 22155
Tétrachloroéthylène	mg/kg Ms	<0,05	0,05		ISO 22155
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
1,1,2-Trichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
1,1-Dichloroéthane	mg/kg Ms	<0,10	0,1		ISO 22155
1,2-Dichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	0,025		ISO 22155
1,1-Dichloroéthylène	mg/kg Ms	<0,10	0,1		ISO 22155
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	0,025		ISO 22155
Somme cis/trans-1,2-Dichloroéthylènes	mg/kg Ms	n.d.			ISO 22155

Hvdrocarbures totaux (IS)	D١	
---------------------------	----	--

riyurocarbures totaux (130)					
Fraction aliphatique C5-C6	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Fraction C5-C10	mg/kg Ms	<1,0 x)	1		conforme à NEN-EN-ISO 16558-1
Fraction >C6-C8	mg/kg Ms	<0,40 x)	0,4		conforme à NEN-EN-ISO 16558-1
Fraction C8-C10	mg/kg Ms	<0,40 x)	0,4		conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Hydrocarbures totaux C10-C40	mg/kg Ms	39,4	20	+/- 21	ISO 16703
Fraction C10-C12	mg/kg Ms	<4,0	4		ISO 16703
Fraction C12-C16	mg/kg Ms	<4,0	4		ISO 16703
Fraction C16-C20	mg/kg Ms	2,5	2	+/- 21	ISO 16703
Fraction C20-C24	mg/kg Ms	<2,0	2		ISO 16703
Fraction C24-C28	mg/kg Ms	4,0	2	+/- 21	ISO 16703
Fraction C28-C32	mg/kg Ms	8,9	2	+/- 21	ISO 16703
Fraction C32-C36	mg/kg Ms	12,5	2	+/- 21	ISO 16703
Fraction C36-C40	mg/kg Ms	8.4	2	+/- 21	ISO 16703

Polychlorobiphényles

Somme 6 PCB	mg/kg Ms	0,022 x)			NEN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	0,024 x)			NEN-EN 16167
PCB (28)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
PCB (52)	mg/kg Ms	0,001	0,001	+/- 33	NEN-EN 16167
PCB (101)	mg/kg Ms	0,004	0,001	+/- 34	NEN-EN 16167
PCB (118)	mg/kg Ms	0,002	0,001	+/- 19	NEN-EN 16167
PCB (138)	mg/kg Ms	0,006	0,001	+/- 30	NEN-EN 16167
PCB (153)	mg/kg Ms	0,007	0,001	+/- 22	NEN-EN 16167
PCB (180)	mg/kg Ms	0,004	0,001	+/- 12	NEN-EN 16167

Analyses sur éluat après lixiviation

RAPPORT D						Date	20.06.2022
DADDODT D	NAMAL VOTO					N° Client	3500495
	'ANALYSES	44050	04 10005 040 5	-DEL: 0		-1	
n° Cde N° échant. Spécification			24 A2205-313_E	PFLI_C	ombieux_s	OI	
ይ N° échant.			6 Solide / Eluat				
Spécification	des échantillons	S12 (3	3-4)				
<u> </u>			54 11 1	Limite	Incert.		
Trichloroéthylè Tétrachloroéthylè Tétrachloroéth 1,1,1-Trichloro 1,1-Dichloroét 1,2-Dichloroét 1,1-Dichloroét 1,1-Dichloroét Trans-1,2-Dichloroét Trans-1,2-Dichloroét Fraction alipha Fraction C5-O Fraction alipha		Unité	Résultat	Quant.	Résultat %	Méthod	e
Trichloroéthylè		mg/kg Ms	<0,05	0,05			ISO 22155
Tétrachloroéth		mg/kg Ms	<0,05	0,05			ISO 22155
1,1,1-Trichlord		mg/kg Ms	<0,05	0,05			ISO 22155
1,1,2-Trichlord		mg/kg Ms	<0,05	0,05			ISO 22155
1,1-Dichloroét		mg/kg Ms	<0,10	0,1			ISO 22155
1,2-Dichloroét		mg/kg Ms mg/kg Ms	<0,05	0,05			ISO 22155
cis-1,2-Dichlor 1,1-Dichloroét		mg/kg Ms	<0,025 <0,10	0,025 0,1			ISO 22155 ISO 22155
Trans-1,2-Dich		mg/kg Ms	<0,10	0,025			ISO 22155
Somme cis/trans	-1,2-Dichloroéthylènes	mg/kg Ms	n.d.	0,023			ISO 22155
		ingrig ivio	ii.u.				100 22100
g Hydrocarbu	res totaux (ISO)		0.00	0.0		oonform	e à NEN-EN-ISO 16558-1
Fraction alipha		mg/kg Ms	<0,20 <1.0 ×)	0,2			e à NEN-EN-ISO 16558-1
Fraction C5-C		mg/kg Ms mg/kg Ms	<1,0 ^{x)} <0,40 ^{x)}	1			e à NEN-EN-ISO 16558-1
Fraction C8-C		mg/kg Ms	<0,40 ×)	0,4 0,4			e à NEN-EN-ISO 16558-1
Fraction alipha		mg/kg Ms	<0,40	0,4			e à NEN-EN-ISO 16558-1
Fraction arom	atique >C6-C8	mg/kg Ms	<0,20	0,2			e à NEN-EN-ISO 16558-1
Fraction alinha	atique >C8-C10	mg/kg Ms	<0,20	0,2			e à NEN-EN-ISO 16558-1
Fraction aroma	atique >C8-C10	mg/kg Ms	<0,20	0,2			e à NEN-EN-ISO 16558-1
Hydrocarbures	s totaux C10-C40	mg/kg Ms	39,4	20	+/- 21		ISO 16703
Fraction alipha Fraction aroma Hydrocarbures Fraction C10-0		*) mg/kg Ms	<4,0	4	.,		ISO 16703
		*) mg/kg Ms	<4,0	4			ISO 16703
Fraction C16-0		*) mg/kg Ms	2,5	2	+/- 21		ISO 16703
Fraction C20-0	C24	*) mg/kg Ms	<2,0	2			ISO 16703
Fraction C24-0	C28	*) mg/kg Ms	4,0	2	+/- 21		ISO 16703
Fraction C24-0	C32	*) mg/kg Ms	8,9	2	+/- 21		ISO 16703
Fraction C32-0 Fraction C36-0		*) mg/kg Ms	12,5	2	+/- 21		ISO 16703
Fraction C36-0	C40	*) mg/kg Ms	8,4	2	+/- 21		ISO 16703
Polychlorob	iphényles						
		mg/kg Ms	0,022 x)			1	NEN-EN 16167
	B (Ballschmiter)	mg/kg Ms	0,024 x)				NEN-EN 16167
PCB (28)		mg/kg Ms	<0,001	0,001			NEN-EN 16167
PCB (52)		mg/kg Ms	0,001	0,001	+/- 33		NEN-EN 16167
FCB (101)		mg/kg Ms	0,004	0,001	+/- 34		NEN-EN 16167
FCB (118)		mg/kg Ms	0,002	0,001	+/- 19		NEN-EN 16167
		mg/kg Ms	0,006	0,001	+/- 30		NEN-EN 16167
PCB (153)		mg/kg Ms	0,007	0,001	+/- 22		NEN-EN 16167
B PCB (180)		mg/kg Ms	0,004	0,001	+/- 12	<u> </u>	NEN-EN 16167
Analyses su	ır éluat après lixiv	/iation_					
L/S cumulé		ml/g	10,0	0,1		Sel	on norme lixiviation
Conductivité é	lectrique	μS/cm	97,0	5	+/- 10	Sel	on norme lixiviation
pΗ			8,8	0	+/- 5		on norme lixiviation
Température		°C	19,9	0		Sel	on norme lixiviation
Analyses Ph	nysico-chimiques	sur éluat					
Résidu à sec	•	mg/l	<100	100		Equiva	lent à NF EN ISO 15216
PCB (153) PCB (180) Analyses su L/S cumulé Conductivité é pH Température Analyses Pt Résidu à sec Fluorures (F) Indice phénol		mg/l	0,2	0,1	+/- 10	Conform	e à ISO 10359-1, conform
Indice phénol		mg/l	<0,010	0,01			à EN 16192 NEN-EN 16192
HILLIGICE DITELLO		HI9/I	₹ 0,010	U,U I	1	I	NLIN-LIN IUIJZ

Analyses Physico-chimiques sur éluat

١١.						
5	Résidu à sec	mg/l	<100	100		Equivalent à NF EN ISO 15216
<u> </u>	Fluorures (F)	mg/l	0,2	0,1	+/- 10	Conforme à ISO 10359-1, conforme à EN 16192
2	Indice phénol	ma/l	<0.010	0.01		NEN-EN 16192

RvA L 005

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 20.06.2022 N° Client 35004955

RAPPORT D'ANALYSES

ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du symbole " *) ".

accrédités selon la norme

paramètres réalisés par AL-West BV sont

n° Cde 1165024 A2205-313_EPFLi_Combleux_sol

N° échant. 365376 Solide / Eluat

Spécification des échantillons S12 (3-4)

			Limite	Incert.	
	Unité	Résultat	Quant.	Résultat %	Méthode
Chlorures (CI)	mg/l	1,1	0,1	+/- 10	Conforme à ISO 15923-1
Sulfates (SO4)	mg/l	11	5	+/- 10	Conforme à ISO 15923-1
COT	mg/l	1,1	1	+/- 10	conforme EN 16192
Métaux sur éluat					
Antimoine (Sb)	μg/I	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Arsenic (As)	μg/l	5,4	5	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Baryum (Ba)	μg/l	12	10	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Cadmium (Cd)	μg/l	<0,1	0,1		Conforme à EN-ISO 17294-2 (2004)
Chrome (Cr)	µg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)
Cuivre (Cu)	μg/l	3,5	2	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Mercure	μg/l	° <0,03	0,03		méthode interne (conforme NEN- EN-ISO 12846)
Molybdène (Mo)	μg/l	14	5	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Nickel (Ni)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Plomb (Pb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Sélénium (Se)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Zinc (Zn)	μg/l	2,1	2	+/- 10	Conforme à EN-ISO 17294-2 (2004)

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé.

Le calcul de l' incertitude de mesure analytique combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l' expression de l' incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordtest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d' élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance).

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Début des analyses: 10.06.2022 Fin des analyses: 17.06.2022

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

(Shy)

AL-West B.V. Mme Fatima-Zahra Saati, Tel. 33/380680132 Chargée relation clientèle

et/ou externalisés sont marqués du symbole " *) ".

accrédités

sont accrédités selon la norme EN ISO/IEC 17025:2017. Seuls les paramètres non

AL-West

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110 e-Mail: info@al-west.nl, www.al-west.nl

ENVISOL 2-4, rue Hector Berlioz 38110 LA TOUR DU PIN **FRANCE**

> 20.06.2022 Date N° Client 35004955

RAPPORT D'ANALYSES

n° Cde 1165024 A2205-313_EPFLi_Combleux_sol

N° échant. 365377 Solide / Eluat

Date de validation 10.06.2022 Prélèvement 07.06.2022 Prélèvement par: Client Spécification des échantillons S13 (0-1)

-	-1		\ - /				
		Unité		Résultat	Limite Quant.	Incert. Résultat %	Méthode
3	Lixiviation						
3	Fraction >4mm (EN12457-2)	%	•	1,2	0,1		Selon norme lixiviation
2	Masse brute Mh pour lixiviation *)	g	•	100	1		Selon norme lixiviation
3	Lixiviation (EN 12457-2)		0				NF EN 12457-2
)	Volume de lixiviant L ajouté pour l'extraction *)	ml		900	1		Selon norme lixiviation
:	Prétraitement des échantillons						
į	Masse échantillon total inférieure à 2 kg	kg	0	0,59	0		
1	Prétraitement de l'échantillon		0	ĺ			Conforme à NEN-EN 16179
	Matière sèche	%	0	89,1	0,01	+/- 1	NEN-EN 15934 ; EN12880
1	Calcul des Fractions solubles						
Ò	Fraction soluble cumulé (var. L/S) *)	mg/kg Ms		0 - 1000	1000		Selon norme lixiviation
•	Antimoine cumulé (var. L/S) *)	mg/kg Ms		0 - 0,05	0,05		Selon norme lixiviation
i	Arsenic cumulé (var. L/S)	mg/kg Ms		0 - 0,05	0,05		Selon norme lixiviation
-	Baryum cumulé (var. L/S)	mg/kg Ms		0,35	0,1		Selon norme lixiviation
5	Cadmium cumulé (var. L/S)	mg/kg Ms		0 - 0,001	0,001		Selon norme lixiviation
5	Chlorures cumulé (var. L/S) *)	mg/kg Ms		12	1		Selon norme lixiviation
5	Chrome cumulé (var. L/S)	mg/kg Ms		0 - 0,02	0,02		Selon norme lixiviation
3	COT cumulé (var. L/S)	mg/kg Ms		37	10		Selon norme lixiviation
	Cuivre cumulé (var. L/S)	mg/kg Ms		0,09	0,02		Selon norme lixiviation
5	Fluorures cumulé (var. L/S) *)	mg/kg Ms		6,0	1		Selon norme lixiviation
5	Indice phénol cumulé (var. L/S) *)	mg/kg Ms		0 - 0,1	0,1		Selon norme lixiviation

Zinc cumulé (var.	L/S)
Analyses Phys	

Mercure cumulé (var. L/S)

Molybdène cumulé (var. L/S)

Nickel cumulé (var. L/S)

Plomb cumulé (var. L/S)

Sélénium cumulé (var. L/S)

Sulfates cumulé (var. L/S)

a	Zinc cumulé (var. L/S)	mg/kg Ms		0,03	0,02		Selon norme lixiviation
ésp	Analyses Physico-chimiques						
éalis	pH-H2O		0	8,5	0,1	+/- 10	Cf. NEN-ISO 10390 (sol uniquement)
SS L	COT Carbone Organique Total	mg/kg Ms		11000	1000	+/- 16	conforme ISO 10694 (2008)
iètre	Prétraitement pour analyses de	es métaux					
aran	Minéralisation à l'eau régale		0				NF-EN 16174; NF EN 13657 (déchets)
Les p							page 1 de 4

0 - 0,0003

0,09

210

0,03

0 - 0.05

0 - 0.05

0 - 0,05

0,0003

0,05

0,05

0,05

0,05

50

0,02

Selon norme lixiviation

*) mg/kg Ms

AL-West B.V.
Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 20.06.2022 N° Client 35004955

RAPPORT D'ANALYSES

n° Cde 1165024 A2205-313_EPFLi_Combleux_sol

N° échant. 365377 Solide / Eluat

Spécification des échantillons S13 (0-1)

	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Métaux					
Arsenic (As)	mg/kg Ms	10	1	+/- 15	Conforme à EN-ISO 11885, EN 16174
Cadmium (Cd)	mg/kg Ms	0,2	0,1	+/- 21	Conforme à EN-ISO 11885, EN 16174
Chrome (Cr)	mg/kg Ms	22	0,2	+/- 12	Conforme à EN-ISO 11885, EN 16174
Cuivre (Cu)	mg/kg Ms	17	0,2	+/- 20	Conforme à EN-ISO 11885, EN 16174
Mercure (Hg)	mg/kg Ms	0,06	0,05	+/- 20	Conforme à ISO 16772 et EN 16174
Nickel (Ni)	mg/kg Ms	14	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Plomb (Pb)	mg/kg Ms	37	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Zinc (Zn)	mg/kg Ms	74	1	+/- 22	Conforme à EN-ISO 11885, EN 16174
Hydrocarbures Aroma	atiques Polycycliques (I	SO)		·	

					16174
Hydrocarbures Aromatique	s Polycycliques (ISO)			
Naphtalène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Acénaphtylène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Acénaphtène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Fluorène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Phénanthrène	mg/kg Ms	0,18	0,05	+/- 20	équivalent à NF EN 16181
Anthracène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Fluoranthène	mg/kg Ms	0,43	0,05	+/- 17	équivalent à NF EN 16181
Pyrène	mg/kg Ms	0,34	0,05	+/- 19	équivalent à NF EN 16181
Benzo(a)anthracène	mg/kg Ms	0,21	0,05	+/- 14	équivalent à NF EN 16181
Chrysène	mg/kg Ms	0,20	0,05	+/- 14	équivalent à NF EN 16181
Benzo(b)fluoranthène	mg/kg Ms	0,21	0,05	+/- 12	équivalent à NF EN 16181
Benzo(k)fluoranthène	mg/kg Ms	0,12	0,05	+/- 14	équivalent à NF EN 16181
Benzo(a)pyrène	mg/kg Ms	0,27	0,05	+/- 14	équivalent à NF EN 16181
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Benzo(g,h,i)pérylène	mg/kg Ms	0,16	0,05	+/- 14	équivalent à NF EN 16181
Indéno(1,2,3-cd)pyrène	mg/kg Ms	0,20	0,05	+/- 17	équivalent à NF EN 16181
HAP (6 Borneff) - somme	mg/kg Ms	1,39			équivalent à NF EN 16181
Somme HAP (VROM)	mg/kg Ms	1,77 ×)			équivalent à NF EN 16181
HAP (EPA) - somme	mg/kg Ms	2,32 x)			équivalent à NF EN 16181
Composés aromatiques					

_	,			
(Comi	osés	arom	าลtเตบ	29

Composés aromatiques				
Benzène	mg/kg Ms	<0,050	0,05	ISO 22155
Toluène	mg/kg Ms	<0,050	0,05	ISO 22155
Ethylbenzène	mg/kg Ms	<0,050	0,05	ISO 22155
m,p-Xylène	mg/kg Ms	<0,10	0,1	ISO 22155
o-Xylène	mg/kg Ms	<0,050	0,05	ISO 22155
Naphtalène	mg/kg Ms	<0,10	0,1	ISO 22155
Somme Xylènes	mg/kg Ms	n.d.		ISO 22155
BTEX total	mg/kg Ms	n.d.		ISO 22155

COHV

Les paramètres réalisés par AL-West BV sont accrédités selon la norme EN ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du symbole " *) ".

ĸ	00117				
_	Chlorure de Vinyle	mg/kg Ms	<0,02	0,02	ISO 22155
ב ב	Dichlorométhane	mg/kg Ms	<0,05	0,05	ISO 22155
	Trichlorométhane	mg/kg Ms	<0,05	0,05	ISO 22155
<u>a</u>	Tétrachlorométhane	mg/kg Ms	<0,05	0,05	ISO 22155

RvA L 005

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

5		Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
n D	Totalala na (da de) a				Ttooditat 70	
2	Trichloroéthylène	mg/kg Ms	<0,05	0,05		ISO 22155
<u> </u>	Tétrachloroéthylène	mg/kg Ms	<0,05	0,05		ISO 22155
פַ	1,1,1-Trichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
Ď	1,1,2-Trichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
5	1,1-Dichloroéthane	mg/kg Ms	<0,10	0,1		ISO 22155
n O	1,2-Dichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
ב ב	cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	0,025		ISO 22155
ŭ	1,1-Dichloroéthylène	mg/kg Ms	<0,10	0,1		ISO 22155
รู้	Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	0,025		ISO 22155
ŝ	Somme cis/trans-1,2-Dichloroéthylènes	mg/kg Ms	n.d.			ISO 22155

Hvdrocarbures totaux (IS)	D١	
---------------------------	----	--

riyurocarbures totaux (130)					
Fraction aliphatique C5-C6	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Fraction C5-C10	mg/kg Ms	<1,0 ×)	1		conforme à NEN-EN-ISO 16558-1
Fraction >C6-C8	mg/kg Ms	<0,40 x)	0,4		conforme à NEN-EN-ISO 16558-1
Fraction C8-C10	mg/kg Ms	<0,40 x)	0,4		conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Hydrocarbures totaux C10-C40	mg/kg Ms	45,6	20	+/- 21	ISO 16703
Fraction C10-C12	mg/kg Ms	<4,0	4		ISO 16703
Fraction C12-C16	mg/kg Ms	<4,0	4		ISO 16703
Fraction C16-C20	mg/kg Ms	3,9	2	+/- 21	ISO 16703
Fraction C20-C24	mg/kg Ms	6,5	2	+/- 21	ISO 16703
Fraction C24-C28	mg/kg Ms	8,6	2	+/- 21	ISO 16703
Fraction C28-C32	mg/kg Ms	12	2	+/- 21	ISO 16703
Fraction C32-C36	mg/kg Ms	9,2	2	+/- 21	ISO 16703
Fraction C36-C40	mg/kg Ms	3.3	2	+/- 21	ISO 16703

Polychlorobiphényles

Somme 6 PCB	mg/kg Ms	0,0070 x)			NEN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	0,0080 ^{x)}			NEN-EN 16167
PCB (28)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
PCB (52)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
PCB (101)	mg/kg Ms	0,001	0,001	+/- 34	NEN-EN 16167
PCB (118)	mg/kg Ms	0,001	0,001	+/- 19	NEN-EN 16167
PCB (138)	mg/kg Ms	0,003	0,001	+/- 30	NEN-EN 16167
PCB (153)	mg/kg Ms	0,002	0,001	+/- 22	NEN-EN 16167
PCB (180)	mg/kg Ms	0,001	0,001	+/- 12	NEN-EN 16167

symbole " ')						Date	20.06.2022
JWD0	RAPPORT D'ANALYSES					N° Client	3500495
		440	5004 A0005 040 5	-DEL: 0		- 1	
Ś	n° Cde		5024 A2205-313_E	PFLI_C	ombieux_s	OI	
Ď.	N° échant.		377 Solide / Eluat				
ma	Spécification des échantillons	S 13	(0-1)				
) J			_,	Limite	Incert.		
Seuls les parametres non accredites et/ou externalises sont		Unité	Résultat	Quant.	Résultat %	Méthode	9
es e	Trichloroéthylène	mg/kg Ms	<0,05	0,05			ISO 22155
E L	Tétrachloroéthylène	mg/kg Ms	<0,05	0,05			ISO 22155
žte	1,1,1-Trichloroéthane	mg/kg Ms	<0,05	0,05			ISO 22155
Ме	1,1,2-Trichloroéthane	mg/kg Ms	<0,05	0,05			ISO 22155
et/C	1,1-Dichloroéthane 1,2-Dichloroéthane	mg/kg Ms mg/kg Ms	<0,10 <0,05	0,1 0,05			ISO 22155
es	cis-1,2-Dichloroéthène	mg/kg Ms	<0,05 <0,025	0,05			ISO 22155 ISO 22155
edi	1,1-Dichloroéthylène	mg/kg Ms	<0,023	0,023			ISO 22155
င်	Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	0,025			ISO 22155
α	Somme cis/trans-1,2-Dichloroéthylènes	mg/kg Ms	n.d.	0,020			ISO 22155
200	Hydrocarbures totaux (ISO)	3 3 -					100 22 100
tres	Fraction aliphatique C5-C6	mg/kg Ms	<0,20	0,2		conform	e à NEN-EN-ISO 16558-1
me	Fraction C5-C10	mg/kg Ms	<1,0 ×)	1			e à NEN-EN-ISO 16558-1
ara	Fraction >C6-C8	mg/kg Ms	<0,40 ^{x)}	0,4			e à NEN-EN-ISO 16558-1
δ. O	Fraction C8-C10	mg/kg Ms	<0,40 ×)	0,4			e à NEN-EN-ISO 16558-1
<u>е</u>	Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	0,2		conform	e à NEN-EN-ISO 16558-1
en	Fraction aromatique >C6-C8	mg/kg Ms	<0,20	0,2		conform	e à NEN-EN-ISO 16558-1
ິ.	Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	0,2		conform	e à NEN-EN-ISO 16558-1
5	Fraction aromatique >C8-C10	mg/kg Ms	<0,20	0,2		conform	e à NEN-EN-ISO 16558-1
1/025:201/.	Hydrocarbures totaux C10-C40	mg/kg Ms	45,6	20	+/- 21		ISO 16703
Š	Fraction C10-C12	*) mg/kg Ms	<4,0	4			ISO 16703
	Fraction C12-C16	*) mg/kg Ms	<4,0	4			ISO 16703
SO/IEC	Fraction C16-C20	*) mg/kg Ms	3,9	2	+/- 21		ISO 16703
\mathcal{S}	Fraction C20-C24	*) mg/kg Ms	6,5	2	+/- 21		ISO 16703
Z	Fraction C24-C28	*) mg/kg Ms	8,6	2	+/- 21		ISO 16703
Ф	Fraction C28-C32	*) mg/kg Ms	12	2	+/- 21		ISO 16703
norme	Fraction C32-C36	*) mg/kg Ms	9,2	2	+/- 21		ISO 16703
_	Fraction C36-C40	*) mg/kg Ms	3,3	2	+/- 21		ISO 16703
	Polychlorobiphényles		.1				
<u>g</u>	Somme 6 PCB	mg/kg Ms	0,0070 ×)				IEN-EN 16167
sont accredites selo	Somme 7 PCB (Ballschmiter)	mg/kg Ms	0,0080 ^{x)}	0.004			IEN-EN 16167
ğ	PCB (28)	mg/kg Ms	<0,001	0,001			IEN-EN 16167
S	PCB (52) PCB (101)	mg/kg Ms mg/kg Ms	<0,001	0,001 0,001	+/- 34		IEN-EN 16167 IEN-EN 16167
ă =	PCB (101) PCB (118)	mg/kg Ms	0,001 0,001	0,001	+/- 34		IEN-EN 16167
sor	PCB (138)	mg/kg Ms	0,003	0,001	+/- 30		IEN-EN 16167
	PCB (153)	mg/kg Ms	0,002	0,001	+/- 22		IEN-EN 16167
St	PCB (180)	mg/kg Ms	0,001	0,001	+/- 12		IEN-EN 16167
Š	Analyses sur éluat après lixiv		2,000	-,			
Ä	L/S cumulé	ml/g	10,0	0,1		Sale	on norme lixiviation
ğ	Conductivité électrique	µS/cm	160	5	+/- 10		on norme lixiviation
es	pH	p 0/0111	8,1	0	+/- 5		on norme lixiviation
alls	Température	°C	21,5	0	., 0		on norme lixiviation
ĕ	Analyses Physico-chimiques		2.,0		1		
tres	Résidu à sec	mg/l	<100	100		Equiva	lent à NF EN ISO 15216
Les parametres realises par AL-West BV	Fluorures (F)	mg/l	0,6	0,1	+/- 10		e à ISO 10359-1, conform
ď		1119/1	0,0		1/- 10		à EN 16192
ä	Indice phénol	mg/l	<0,010	0,01			IEN-EN 16192

1)					
Résidu à sec	mg/l	<100	100		Equivalent à NF EN ISO 15216
Fluorures (F)	mg/l	0,6	0,1	+/- 10	Conforme à ISO 10359-1, conforme à EN 16192
Indice phénol	mg/l	<0.010	0.01		NEN-EN 16192

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 20.06.2022 N° Client 35004955

RAPPORT D'ANALYSES

ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du symbole " *) ".

accrédités selon la norme

paramètres réalisés par AL-West BV sont

n° Cde 1165024 A2205-313_EPFLi_Combleux_sol

N° échant. 365377 Solide / Eluat

Spécification des échantillons S13 (0-1)

	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
) 	Office	Resultat	Quant.	Resultat 76	
Chlorures (CI)	mg/l	1,2	0,1	+/- 10	Conforme à ISO 15923-1
Sulfates (SO4)	mg/l	21	5	+/- 10	Conforme à ISO 15923-1
COT	mg/l	3,7	1	+/- 10	conforme EN 16192
Métaux sur éluat					
Antimoine (Sb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Arsenic (As)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Baryum (Ba)	μg/l	35	10	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Cadmium (Cd)	μg/l	<0,1	0,1		Conforme à EN-ISO 17294-2 (2004)
Chrome (Cr)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)
Cuivre (Cu)	µg/l	8,5	2	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Mercure	μg/l	° <0,03	0,03		méthode interne (conforme NEN- EN-ISO 12846)
Molybdène (Mo)	μg/l	8,9	5	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Nickel (Ni)	µg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Plomb (Pb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Sélénium (Se)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Zinc (Zn)	μg/l	2,6	2	+/- 10	Conforme à EN-ISO 17294-2 (2004)

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé.

Le calcul de l' incertitude de mesure analytique combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l' expression de l' incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordtest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d' élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance).

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Début des analyses: 10.06.2022 Fin des analyses: 17.06.2022

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

(Shy)

AL-West B.V. Mme Fatima-Zahra Saati, Tel. 33/380680132 Chargée relation clientèle

accrédités et/ou externalisés sont marqués du symbole " *) ".

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

ENVISOL 2-4, rue Hector Berlioz 38110 LA TOUR DU PIN **FRANCE**

> Date 20.06.2022 N° Client 35004955

RAPPORT D'ANALYSES

n° Cde 1165024 A2205-313_EPFLi_Combleux_sol

N° échant. 365378 Solide / Eluat

Date de validation 10.06.2022 Prélèvement 07.06.2022 Prélèvement par: Client S13 (1-2) Spécification des échantillons

Spécification des échantillons	S1:	3 (1-2)				
Lixiviation Fraction >4mm (EN12457-2) Masse brute Mh pour lixiviation Lixiviation (EN 12457-2) Volume de lixiviant L ajouté pour l'extraction	Unité		Résultat	Limite Quant.	Incert. Résultat %	Méthode
Lixiviation Fraction >4mm (EN12457-2)	%	•	4.0	0.4		Selon norme lixiviation
Masse brute Mh pour lixiviation	*\		1,0 100	0,1 1		Selon norme lixiviation
Lixiviation (EN 12457-2)	⁷ g	0	100	ı		NF EN 12457-2
Volume de lixiviant L ajouté pour l'extraction	*) ml		900	1		Selon norme lixiviation
	1		900	ı		Selon norme lixiviation
Prétraitement des échantillon						
Masse échantillon total inférieure à 2 kg	kg	۰	0,63	0		
Prétraitement de l'échantillon		۰				Conforme à NEN-EN 1617
Matière sèche	%	۰	87,7	0,01	+/- 1	NEN-EN 15934 ; EN128
Calcul des Fractions solubles	;					
Fraction soluble cumulé (var. L/S)	*) mg/kg Ms		0 - 1000	1000		Selon norme lixiviation
Antimoine cumulé (var. L/S)	*) mg/kg Ms		0 - 0,05	0,05		Selon norme lixiviation
Arsenic cumulé (var. L/S)	*) mg/kg Ms		0 - 0,05	0,05		Selon norme lixiviation
	*) mg/kg Ms		0,26	0,1		Selon norme lixiviation
Cadmium cumulé (var. L/S)	*) mg/kg Ms		0 - 0,001	0,001		Selon norme lixiviation
Chlorures cumulé (var. L/S)	*) mg/kg Ms		11	1		Selon norme lixiviation
Chrome cumulé (var. L/S)	*) mg/kg Ms		0,02	0,02		Selon norme lixiviation
COT cumulé (var. L/S)	*) mg/kg Ms		18	10		Selon norme lixiviation
Cuivre cumulé (var. L/S)	*) mg/kg Ms		0,05	0,02		Selon norme lixiviation
Fluorures cumulé (var. L/S)	*) mg/kg Ms		4,0	1		Selon norme lixiviation
Indice phénol cumulé (var. L/S)	*) mg/kg Ms		0 - 0,1	0,1		Selon norme lixiviation
Mercure cumulé (var. L/S)	*) mg/kg Ms		0 - 0,0003	0,0003		Selon norme lixiviation
Molybdène cumulé (var. L/S)	*) mg/kg Ms		0 - 0,05	0,05		Selon norme lixiviation
Nickel cumulé (var. L/S)	*) mg/kg Ms		0 - 0,05	0,05		Selon norme lixiviation
Plomb cumulé (var. L/S)	*) mg/kg Ms		0 - 0,05	0,05		Selon norme lixiviation
Sélénium cumulé (var. L/S)	*) mg/kg Ms		0 - 0,05	0,05		Selon norme lixiviation
Sulfates cumulé (var. L/S)	*) mg/kg Ms		140	50		Selon norme lixiviation
Zinc cumulé (var. L/S)	*) mg/kg Ms		0,03	0,02		Selon norme lixiviation
Analyses Physico-chimiques						
pH-H2O		0	8,4	0,1	+/- 10	Cf. NEN-ISO 10390 (sol uniquement)
COT Carbone Organique Total	mg/kg Ms		6600	1000	+/- 16	conforme ISO 10694 (2008
Prétraitement pour analyses of	des métaux					
Minéralisation à l'eau régale		•				NF-EN 16174; NF EN 13657 (déchets)

pH-H2O		° 8,4	0,1	+/- 10	Cf. NEN-ISO 10390 (sol uniquement)
COT Carbone Organique Total	mg/kg Ms	6600	1000	+/- 16	conforme ISO 10694 (2008)

RvA L 005

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Métaux					
Arsenic (As)	mg/kg Ms	11	1	+/- 15	Conforme à EN-ISO 11885, EN 16174
Cadmium (Cd)	mg/kg Ms	<0,1	0,1		Conforme à EN-ISO 11885, EN 16174
Chrome (Cr)	mg/kg Ms	23	0,2	+/- 12	Conforme à EN-ISO 11885, EN 16174
Cuivre (Cu)	mg/kg Ms	9,0	0,2	+/- 20	Conforme à EN-ISO 11885, EN 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conforme à ISO 16772 et EN 16174
Nickel (Ni)	mg/kg Ms	13	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Plomb (Pb)	mg/kg Ms	19	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Zinc (Zn)	mg/kg Ms	43	1	+/- 22	Conforme à EN-ISO 11885, EN 16174

					Date	20.06.20
					N° Client	350049
RAPPORT D'ANALYSES						
n° Cde	1165024	A2205-313_E	EPFLi_C	combleux_sc	ol	
N° échant.	365378 S	olide / Eluat				
Spécification des échantillons	S13 (1-2)					
	()		Limite	Incert.		
	Unité	Résultat	Quant.	Résultat %	Méthode	
Métaux						
Arsenic (As)	mg/kg Ms	11	1	+/- 15	Conforme	è à EN-ISO 11885, E
Cadmium (Cd)	mg/kg Ms	<0,1	0,1		Conforme	16174 e à EN-ISO 11885, E
Chrome (Cr)	mg/kg Ms	23	0,2	+/- 12	Conforme	16174 e à EN-ISO 11885, E
. ,						16174
Cuivre (Cu)	mg/kg Ms	9,0	0,2	+/- 20		e à EN-ISO 11885, E 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conform	ne à ISO 16772 et EN 16174
Nickel (Ni)	mg/kg Ms	13	0,5	+/- 11	Conforme	e à EN-ISO 11885, E
Plomb (Pb)	mg/kg Ms	19	0,5	+/- 11	Conforme	16174 e à EN-ISO 11885, E
. ,						16174
Zinc (Zn)	mg/kg Ms	43	1	+/- 22	Conforme	e à EN-ISO 11885, E 16174
Hydrocarbures Aromatiques	Polycycliques (ISC))		·	·	
Naphtalène	mg/kg Ms	<0,050	0,05		équival	ent à NF EN 1618
Acénaphtylène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Acénaphtène	mg/kg Ms	<0,050	0,05		équival	ent à NF EN 1618
Fluorène	mg/kg Ms	<0,050	0,05		équival	ent à NF EN 1618
Phénanthrène	mg/kg Ms	<0,050	0,05		équival	ent à NF EN 1618
Anthracène	mg/kg Ms	<0,050	0,05		équival	ent à NF EN 1618
Fluoranthène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Pyrène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Benzo(a)anthracène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Chrysène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Benzo(b)fluoranthène	mg/kg Ms	<0,050	0,05		<u> </u>	ent à NF EN 1618
Benzo(k)fluoranthène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Benzo(a)pyrène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
HAP (6 Borneff) - somme	mg/kg Ms	n.d.	0,00			ent à NF EN 1618
Somme HAP (VROM)	mg/kg Ms	n.d.				ent à NF EN 1618
HAP (EPA) - somme	mg/kg Ms	n.d.				ent à NF EN 1618
	ilig/kg ivis	n.u.			equivai	entaini Lin 1016
Composés aromatiques		1				
Benzène	mg/kg Ms	<0,050	0,05			ISO 22155
Toluène	mg/kg Ms	<0,050	0,05			ISO 22155
Ethylbenzène	mg/kg Ms	<0,050	0,05			ISO 22155
m,p-Xylène	mg/kg Ms	<0,10	0,1			ISO 22155
o-Xylène	mg/kg Ms	<0,050	0,05			ISO 22155
Naphtalène	mg/kg Ms	<0,10	0,1			ISO 22155
Somme Xylènes	mg/kg Ms	n.d.				ISO 22155
BTEX total	*) mg/kg Ms	n.d.				ISO 22155
COHV						
Chlorure de Vinyle	mg/kg Ms	<0,02	0,02			ISO 22155
Dichlorométhane	mg/kg Ms	<0,02	0,05			ISO 22155
Trichlorométhane	mg/kg Ms	<0,05	0,05			ISO 22155
Tétrachlorométhane	mg/kg Ms	<0,05	0,05	+		ISO 22155
i on acmicrometriane	Ingring IVIS	~U,U 3	0,00			100 44 100

_	,	
Com	poses	aromatiques

ક	Composés aromatiques				
Ĕ	Benzène	mg/kg Ms	<0,050	0,05	ISO 22155
ń	Toluène	mg/kg Ms	<0,050	0,05	ISO 22155
<u> </u>	Ethylbenzène	mg/kg Ms	<0,050	0,05	ISO 22155
ß	m,p-Xylène	mg/kg Ms	<0,10	0,1	ISO 22155
?	o-Xylène	mg/kg Ms	<0,050	0,05	ISO 22155
ζ	Naphtalène	mg/kg Ms	<0,10	0,1	ISO 22155
ğ	Somme Xylènes	mg/kg Ms	n.d.		ISO 22155
ה ט	BTEX total	mg/kg Ms	n.d.		ISO 22155

COHV

ĸ	00.11				
_	Chlorure de Vinyle	mg/kg Ms	<0,02	0,02	ISO 22155
ב ב	Dichlorométhane	mg/kg Ms	<0,05	0,05	ISO 22155
=	Trichlorométhane	mg/kg Ms	<0,05	0,05	ISO 22155
ם ם	Tétrachlorométhane	mg/kg Ms	<0,05	0,05	ISO 22155

RvA L 005

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

			Limite	Incert.	
	Unité	Résultat	Quant.	Résultat %	Méthode
Trichloroéthylène	mg/kg Ms	<0,05	0,05		ISO 22155
Tétrachloroéthylène	mg/kg Ms	<0,05	0,05		ISO 22155
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
1,1,2-Trichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
1,1-Dichloroéthane	mg/kg Ms	<0,10	0,1		ISO 22155
1,2-Dichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	0,025		ISO 22155
1,1-Dichloroéthylène	mg/kg Ms	<0,10	0,1		ISO 22155
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	0,025		ISO 22155
Somme cis/trans-1,2-Dichloroéthylènes	mg/kg Ms	n.d.			ISO 22155

Hydrocarbures to	otaux (ISO)
------------------	-------------

R Hydrocarbures totaux (130)				
Fraction aliphatique C5-C6	mg/kg Ms	<0,20	0,2	conforme à NEN-EN-ISO 16558-1
Fraction C5-C10	mg/kg Ms	<1,0 x)	1	conforme à NEN-EN-ISO 16558-1
Fraction >C6-C8	mg/kg Ms	<0,40 ×)	0,4	conforme à NEN-EN-ISO 16558-1
Fraction C8-C10	mg/kg Ms	<0,40 ×)	0,4	conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	0,2	conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	0,2	conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	0,2	conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	0,2	conforme à NEN-EN-ISO 16558-1
Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	20	ISO 16703
Fraction C10-C12	mg/kg Ms	<4,0	4	ISO 16703
Fraction C12-C16	mg/kg Ms	<4,0	4	ISO 16703
Fraction C16-C20	mg/kg Ms	<2,0	2	ISO 16703
Fraction C20-C24	mg/kg Ms	<2,0	2	ISO 16703
Fraction C24-C28	mg/kg Ms	<2,0	2	ISO 16703
Fraction C28-C32	mg/kg Ms	<2,0	2	ISO 16703
Fraction C32-C36	mg/kg Ms	<2,0	2	ISO 16703
Fraction C36-C40	mg/kg Ms	<2,0	2	ISO 16703

Polychlorobiphényles

Somme 6 PCB	mg/kg Ms	n.d.		NEN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.		NEN-EN 16167
PCB (28)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB (52)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB (101)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB (118)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB (138)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB (153)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB (180)	mg/kg Ms	<0,001	0,001	NEN-EN 16167

Analyses sur éluat après lixiviation

RAPPORT D'ANALYSES					Date N° Client	20.06.2022 35004955
RAPPORT D'ANALYSES					N Olichi	33004330
n° Cde	11650	24 A2205-313_E	PFLi_C	ombleux_s	ol	
N° échant.	36537	Solide / Eluat				
Spécification des échantillons	S13 (1	-2)				
	0.0(.	-,	Limite	Incert.		
	Unité	Résultat	Quant.	Résultat %	Méthod	е
Trichloroéthylène	mg/kg Ms	<0,05	0,05			ISO 22155
Tétrachloroéthylène	mg/kg Ms	<0,05	0,05			ISO 22155
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	0,05			ISO 22155
1,1,2-Trichloroéthane	mg/kg Ms	<0,05	0,05			ISO 22155
1,1-Dichloroéthane	mg/kg Ms	<0,10	0,1			ISO 22155
1,2-Dichloroéthane	mg/kg Ms	<0,05	0,05			ISO 22155
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	0,025			ISO 22155
1,1-Dichloroéthylène	mg/kg Ms	<0,10	0,1			ISO 22155
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	0,025			ISO 22155
Somme cis/trans-1,2-Dichloroéthylènes	mg/kg Ms	n.d.				ISO 22155
Hydrocarbures totaux (ISO)						
Fraction aliphatique C5-C6	mg/kg Ms	<0,20	0,2		conform	e à NEN-EN-ISO 16558-1
Fraction C5-C10	mg/kg Ms	<1,0 x)	1		conform	e à NEN-EN-ISO 16558-1
Fraction >C6-C8	mg/kg Ms	<0,40 x)	0,4		conform	e à NEN-EN-ISO 16558-1
Fraction C8-C10	mg/kg Ms	<0,40 x)	0,4		conform	e à NEN-EN-ISO 16558-1
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	0,2		conform	e à NEN-EN-ISO 16558-1
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	0,2		conform	e à NEN-EN-ISO 16558-1
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	0,2			e à NEN-EN-ISO 16558-1
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	0,2		conform	e à NEN-EN-ISO 16558-1
Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	20			ISO 16703
Fraction C10-C12	*) mg/kg Ms	<4,0	4			ISO 16703
Fraction C12-C16	*) mg/kg Ms	<4,0	4			ISO 16703
Fraction C16-C20	*) mg/kg Ms	<2,0	2			ISO 16703
Fraction C20-C24	*) mg/kg Ms	<2,0	2			ISO 16703
Fraction C24-C28	*) mg/kg Ms	<2,0	2			ISO 16703
Fraction C28-C32	*) mg/kg Ms	<2,0	2			ISO 16703
Fraction C32-C36	*) mg/kg Ms	<2,0	2			ISO 16703
Fraction C36-C40	*) mg/kg Ms	<2,0	2			ISO 16703
Polychlorobiphényles						
Somme 6 PCB	mg/kg Ms	n.d.			1	NEN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.				NEN-EN 16167
PCB (28)	mg/kg Ms	<0,001	0,001			NEN-EN 16167
PCB (52)	mg/kg Ms	<0,001	0,001			NEN-EN 16167
PCB (101)	mg/kg Ms	<0,001	0,001			NEN-EN 16167
PCB (118)	mg/kg Ms	<0,001	0,001			NEN-EN 16167
PCB (138)	mg/kg Ms	<0,001	0,001			NEN-EN 16167
PCB (153)	mg/kg Ms	<0,001	0,001			NEN-EN 16167
PCB (180)	mg/kg Ms	<0,001	0,001		Γ	NEN-EN 16167
Analyses sur éluat après lixiv	riation					
L/S cumulé	ml/g	10,0	0,1		Sel	on norme lixiviation
Conductivité électrique	μS/cm	150	5	+/- 10	Sel	on norme lixiviation
рН		8,1	0	+/- 5		on norme lixiviation
Température	°C	21,0	0		Sel	on norme lixiviation
Analyses Physico-chimiques	sur éluat					
Résidu à sec	mg/l	<100	100		Equiva	alent à NF EN ISO 15216
PCB (153) PCB (180) Analyses sur éluat après lixiv L/S cumulé Conductivité électrique pH Température Analyses Physico-chimiques Résidu à sec Fluorures (F) Indice phénol	mg/l	0,4	0,1	+/- 10	Conform	e à ISO 10359-1, conforme
Indian phána!		·				à EN 16192
Indice phénol	mg/l	<0,010	0,01		Γ	NEN-EN 16192

Analyses Physico-chimiques sur éluat

`						
5	Résidu à sec	mg/l	<100	100		Equivalent à NF EN ISO 15216
5	Fluorures (F)	mg/l	0,4	0,1	+/- 10	Conforme à ISO 10359-1, conforme à EN 16192
_	Indice phénol	ma/l	<0.010	0.01		NEN-EN 16192

RvA L 005

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 20.06.2022 N° Client 35004955

RAPPORT D'ANALYSES

ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du symbole " *) ".

accrédités selon la norme

paramètres réalisés par AL-West BV sont

n° Cde 1165024 A2205-313_EPFLi_Combleux_sol

N° échant. 365378 Solide / Eluat

Spécification des échantillons \$13 (1-2)

	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Chlorures (CI)	mg/l	1,1	0,1	+/- 10	Conforme à ISO 15923-1
Sulfates (SO4)	mg/l	14	5	+/- 10	Conforme à ISO 15923-1
COT	mg/l	1,8	1	+/- 10	conforme EN 16192
Métaux sur éluat					
Antimoine (Sb)	µg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Arsenic (As)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Baryum (Ba)	μg/l	26	10	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Cadmium (Cd)	μg/l	<0,1	0,1		Conforme à EN-ISO 17294-2 (2004)
Chrome (Cr)	μg/l	2,3	2	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Cuivre (Cu)	μg/l	5,0	2	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Mercure	μg/l	° <0,03	0,03		méthode interne (conforme NEN- EN-ISO 12846)
Molybdène (Mo)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Nickel (Ni)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Plomb (Pb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Sélénium (Se)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Zinc (Zn)	μg/l	3,4	2	+/- 10	Conforme à EN-ISO 17294-2 (2004)

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé.

Le calcul de l' incertitude de mesure analytique combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l' expression de l' incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordtest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d' élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance).

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Début des analyses: 10.06.2022 Fin des analyses: 17.06.2022

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

(Styl

AL-West B.V. Mme Fatima-Zahra Saati, Tel. 33/380680132 Chargée relation clientèle

FRANCE

accrédités et/ou externalisés sont marqués du symbole " *) ".

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110 e-Mail: info@al-west.nl, www.al-west.nl

ENVISOL 2-4, rue Hector Berlioz 38110 LA TOUR DU PIN

> Date 20.06.2022 N° Client 35004955

RAPPORT D'ANALYSES

n° Cde 1165024 A2205-313_EPFLi_Combleux_sol

N° échant. 365379 Solide / Eluat

Date de validation 10.06.2022 Prélèvement 07.06.2022 Prélèvement par: Client Spécification des échantillons S15 (2-3)

Spécification des échantillons	S15	(2-3)			
	Unité	Résul	Limite at Quant.	Incert. Résultat %	Méthode
Lixiviation				1	
Fraction >4mm (EN12457-2)	%		0,1		Selon norme lixiviation
Masse brute Mh pour lixiviation	*) g		00 1		Selon norme lixiviation
Lixiviation (EN 12457-2)		0			NF EN 12457-2
Volume de lixiviant L ajouté pour l'extraction	*) ml	9	00 1		Selon norme lixiviation
Prétraitement des échantillon	S				
Masse échantillon total inférieure à 2 kg	kg	° 0,	58 0		
Prétraitement de l'échantillon		0			Conforme à NEN-EN 1617
Matière sèche	%	° 89),1 0,01	+/- 1	NEN-EN 15934 ; EN1288
Calcul des Fractions solubles	;				
Calcul des Fractions solubles Fraction soluble cumulé (var. L/S) Antimoine cumulé (var. L/S) Arsenic cumulé (var. L/S) Baryum cumulé (var. L/S) Cadmium cumulé (var. L/S) Chlorures cumulé (var. L/S) Chrome cumulé (var. L/S) COT cumulé (var. L/S) Cuivre cumulé (var. L/S) Fluorures cumulé (var. L/S) Fluorures cumulé (var. L/S) Indice phénol cumulé (var. L/S) Mercure cumulé (var. L/S) Molybdène cumulé (var. L/S)	*) mg/kg Ms	0 - 10	1000		Selon norme lixiviation
Antimoine cumulé (var. L/S)	*) mg/kg Ms	0 - 0,	0,05		Selon norme lixiviation
Arsenic cumulé (var. L/S)	*) mg/kg Ms	0 - 0,			Selon norme lixiviation
Baryum cumulé (var. L/S)	*) mg/kg Ms	0,	15 0,1		Selon norme lixiviation
Cadmium cumulé (var. L/S)	*) mg/kg Ms	0 - 0,0	0,001		Selon norme lixiviation
Chlorures cumulé (var. L/S)	*) mg/kg Ms	8	3 ,0 1		Selon norme lixiviation
Chrome cumulé (var. L/S)	*) mg/kg Ms	0 - 0,	0,02		Selon norme lixiviation
COT cumulé (var. L/S)	*) mg/kg Ms	0 -	10 10		Selon norme lixiviation
Cuivre cumulé (var. L/S)	*) mg/kg Ms	0 - 0,	0,02		Selon norme lixiviation
Fluorures cumulé (var. L/S)	*) mg/kg Ms	8	3 ,0 1		Selon norme lixiviation
Indice phénol cumulé (var. L/S)	*) mg/kg Ms	0 - 0),1 0,1		Selon norme lixiviation
Mercure cumulé (var. L/S)	*) mg/kg Ms	0 - 0,00	0,0003		Selon norme lixiviation
Molybdène cumulé (var. L/S)	*) mg/kg Ms	0,	46 0,05		Selon norme lixiviation
Nickel cumulé (var. L/S)	*) mg/kg Ms	0 - 0,	0,05		Selon norme lixiviation
Plomb cumulé (var. L/S)	*) mg/kg Ms	0 - 0,	0,05		Selon norme lixiviation
Sélénium cumulé (var. L/S)	*) mg/kg Ms	0 - 0,	0, 05		Selon norme lixiviation
Sulfates cumulé (var. L/S)	*) mg/kg Ms		74 50		Selon norme lixiviation
Zinc cumulé (var. L/S)	*) mg/kg Ms	0 - 0,	0,02		Selon norme lixiviation
Analyses Physico-chimiques					
pH-H2O		°	0,1	+/- 10	Cf. NEN-ISO 10390 (sol uniquement)
COT Carbone Organique Total	mg/kg Ms	26	1000	+/- 16	conforme ISO 10694 (2008
Prétraitement pour analyses	des métaux				
Minéralisation à l'eau régale		0			NF-EN 16174; NF EN 13657 (déchets)

5	pH-H2O		° 8,6	0,1	+/- 10	uniquement)
	COT Carbone Organique Total	mg/kg Ms	2600	1000	+/- 16	conforme ISO 10694 (2008)
_		_				

AL-West B.V.
Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 20.06.2022 N° Client 35004955

RAPPORT D'ANALYSES

n° Cde 1165024 A2205-313_EPFLi_Combleux_sol

N° échant. **365379** Solide / Eluat

Spécification des échantillons S15 (2-3)

	Unité	Résultat	Quant.	Résultat %	Méthode
Métaux					
Arsenic (As)	mg/kg Ms	20	1	+/- 15	Conforme à EN-ISO 11885, EN 16174
Cadmium (Cd)	mg/kg Ms	<0,1	0,1		Conforme à EN-ISO 11885, EN 16174
Chrome (Cr)	mg/kg Ms	32	0,2	+/- 12	Conforme à EN-ISO 11885, EN 16174
Cuivre (Cu)	mg/kg Ms	8,2	0,2	+/- 20	Conforme à EN-ISO 11885, EN 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conforme à ISO 16772 et EN 16174
Nickel (Ni)	mg/kg Ms	18	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Plomb (Pb)	mg/kg Ms	16	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Zinc (Zn)	mg/kg Ms	45	1	+/- 22	Conforme à EN-ISO 11885, EN 16174

Limite

Incert.

` ,				16174
Hydrocarbures Aromatique	es Polycycliques (I	SO)		
Naphtalène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Acénaphtylène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Acénaphtène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Fluorène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Phénanthrène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Anthracène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Fluoranthène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Pyrène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Benzo(a)anthracène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Chrysène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Benzo(b)fluoranthène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Benzo(k)fluoranthène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Benzo(a)pyrène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
HAP (6 Borneff) - somme	mg/kg Ms	n.d.		équivalent à NF EN 16181
Somme HAP (VROM)	mg/kg Ms	n.d.		équivalent à NF EN 16181
HAP (EPA) - somme	mg/kg Ms	n.d.		équivalent à NF EN 16181
Composés aromatiques				

^	,	4.	
Com	noses	aromatiques	

Composés aromatiques				
Benzène	mg/kg Ms	<0,050	0,05	ISO 22155
Toluène	mg/kg Ms	<0,050	0,05	ISO 22155
Ethylbenzène	mg/kg Ms	<0,050	0,05	ISO 22155
m,p-Xylène	mg/kg Ms	<0,10	0,1	ISO 22155
o-Xylène	mg/kg Ms	<0,050	0,05	ISO 22155
Naphtalène	mg/kg Ms	<0,10	0,1	ISO 22155
Somme Xylènes	mg/kg Ms	n.d.		ISO 22155
BTEX total	*) mg/kg Ms	n.d.		ISO 22155

COHV

Les paramètres réalisés par AL-West BV sont accrédités selon la norme EN ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du symbole " *) ".

₹	00111				
-	Chlorure de Vinyle	mg/kg Ms	<0,02	0,02	ISO 22155
5	Dichlorométhane	mg/kg Ms	<0,05	0,05	ISO 22155
2	Trichlorométhane	mg/kg Ms	<0,05	0,05	ISO 22155
5	Tétrachlorométhane	mg/kg Ms	<0,05	0,05	ISO 22155

RvA L 005

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

5		Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
n D	Totalala na (da de) a				Ttooditat 70	
2	Trichloroéthylène	mg/kg Ms	<0,05	0,05		ISO 22155
<u> </u>	Tétrachloroéthylène	mg/kg Ms	<0,05	0,05		ISO 22155
פַ	1,1,1-Trichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
Ď	1,1,2-Trichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
5	1,1-Dichloroéthane	mg/kg Ms	<0,10	0,1		ISO 22155
n O	1,2-Dichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
ב ב	cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	0,025		ISO 22155
ŭ	1,1-Dichloroéthylène	mg/kg Ms	<0,10	0,1		ISO 22155
รู้	Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	0,025		ISO 22155
ŝ	Somme cis/trans-1,2-Dichloroéthylènes	mg/kg Ms	n.d.			ISO 22155

Hydrocarbures to	otaux (ISO)
------------------	-------------

nyurocarbures totaux (130)				
Fraction aliphatique C5-C6	mg/kg Ms	<0,20	0,2	conforme à NEN-EN-ISO 16558-1
Fraction C5-C10	mg/kg Ms	<1,0 x)	1	conforme à NEN-EN-ISO 16558-1
Fraction >C6-C8	mg/kg Ms	<0,40 x)	0,4	conforme à NEN-EN-ISO 16558-1
Fraction C8-C10	mg/kg Ms	<0,40 x)	0,4	conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	0,2	conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	0,2	conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	0,2	conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	0,2	conforme à NEN-EN-ISO 16558-1
Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	20	ISO 16703
Fraction C10-C12	mg/kg Ms	<4,0	4	ISO 16703
Fraction C12-C16	mg/kg Ms	<4,0	4	ISO 16703
Fraction C16-C20	mg/kg Ms	<2,0	2	ISO 16703
Fraction C20-C24	mg/kg Ms	<2,0	2	ISO 16703
Fraction C24-C28	mg/kg Ms	<2,0	2	ISO 16703
Fraction C28-C32	mg/kg Ms	<2,0	2	ISO 16703
Fraction C32-C36	mg/kg Ms	<2,0	2	ISO 16703
Fraction C36-C40	mg/kg Ms	<2,0	2	ISO 16703

Polychlorobiphényles

Somme 6 PCB	mg/kg Ms	n.d.		NEN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.		NEN-EN 16167
PCB (28)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB (52)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB (101)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB (118)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB (138)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB (153)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB (180)	mg/kg Ms	<0,001	0,001	NEN-EN 16167

Analyses sur éluat après lixiviation

					Date	20.06.202
DARRORT DIAMAL VOCO					N° Client	3500495
RAPPORT D'ANALYSES	440500	4 40005 040 5			- 1	
n° Cde		4 A2205-313_E	PFLI_C	ombieux_s	OI	
N° échant.		Solide / Eluat				
Spécification des échantillons	S15 (2-3	3)				
	11-27	Disable	Limite	Incert.	NACOL - J	
	Unité	Résultat	Quant.	Résultat %	Méthode	
Trichloroéthylène	mg/kg Ms	<0,05	0,05			ISO 22155
Tétrachloroéthylène	mg/kg Ms	<0,05	0,05			ISO 22155
1,1,1-Trichloroéthane 1,1,2-Trichloroéthane	mg/kg Ms mg/kg Ms	<0,05	0,05			ISO 22155 ISO 22155
1,1-Dichloroéthane	mg/kg Ms	<0,05 <0,10	0,05 0,1			ISO 22155
1,2-Dichloroéthane	mg/kg Ms	<0,10	0,05			ISO 22155
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	0,025			ISO 22155
1,1-Dichloroéthylène	mg/kg Ms	<0,10	0,1			ISO 22155
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	0,025			ISO 22155
Somme cis/trans-1,2-Dichloroéthylènes	mg/kg Ms	n.d.	,			ISO 22155
Hydrocarbures totaux (ISO)						
Fraction aliphatique C5-C6	mg/kg Ms	<0,20	0,2		conforme	à NEN-EN-ISO 16558-
Fraction C5-C10	mg/kg Ms	<1,0 x)	1		conforme	à NEN-EN-ISO 16558-
Fraction >C6-C8	mg/kg Ms	<0,40 x)	0,4		conforme	à NEN-EN-ISO 16558-
Fraction C8-C10	mg/kg Ms	<0,40 ×)	0,4			à NEN-EN-ISO 16558-
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	0,2			à NEN-EN-ISO 16558-
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	0,2			à NEN-EN-ISO 16558-
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	0,2			à NEN-EN-ISO 16558-
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	0,2		conforme	à NEN-EN-ISO 16558-
Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	20			ISO 16703
Fraction C10-C12	ilig/itg ivio	<4,0	4			ISO 16703
Fraction C12-C16 Fraction C16-C20	*) mg/kg Ms *) mg/kg Ms	<4,0 <2,0	<u>4</u> 2			ISO 16703 ISO 16703
Fraction C20-C24	*) mg/kg Ms	<2,0 <2,0	2			ISO 16703
Fraction C24-C28	*) mg/kg Ms	<2,0	2			ISO 16703
Fraction C28-C32	*) mg/kg Ms	<2,0	2			ISO 16703
Fraction C32-C36	*) mg/kg Ms	<2,0	2			ISO 16703
Fraction C36-C40	*) mg/kg Ms	<2,0	2			ISO 16703
Polychlorobiphényles	, <u> </u>	,-,		1	I	
Somme 6 PCB	mg/kg Ms	n.d.			N	EN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.				EN-EN 16167
PCB (28)	mg/kg Ms	<0,001	0,001			EN-EN 16167
PCB (52)	mg/kg Ms	<0,001	0,001			EN-EN 16167
PCB (101)	mg/kg Ms	<0,001	0,001			EN-EN 16167
PCB (118)	mg/kg Ms	<0,001	0,001			EN-EN 16167
PCB (138)	mg/kg Ms	<0,001	0,001			EN-EN 16167
PCB (153)	mg/kg Ms	<0,001	0,001			EN-EN 16167
PCB (180)	mg/kg Ms	<0,001	0,001		N	EN-EN 16167
Analyses sur éluat après lixiv	/iation					
L/S cumulé	ml/g	10,0	0,1		Selo	n norme lixiviation
Conductivité électrique	μS/cm	99,0	5	+/- 10		n norme lixiviation
pH .	1.2	8,6	0	+/- 5		n norme lixiviation
Température	°C	20,3	0		Selo	n norme lixiviation
Analyses Physico-chimiques						
Résidu à sec	mg/l	<100	100			ent à NF EN ISO 15216
Fluorures (F)	mg/l	0,8	0,1	+/- 10		à ISO 10359-1, conforn à EN 16192
Indice phénol	mg/l	<0,010	0,01			EN-EN 16192

Analyses Physico-chimiques sur éluat

5	Résidu à sec	mg/l	<100	100		Equivalent à NF EN ISO 15216
5	Fluorures (F)	mg/l	0,8	0,1	+/- 10	Conforme à ISO 10359-1, conforme à EN 16192
2	Indice phénol	ma/l	<0.010	0.01		NEN-EN 16192

page 3 de 4

RvA L 005

Kamer van Koophandel Nr. 08110898 ppa. Marc VAT/BTW-ID-Nr.: NL 811132559 B01 Directeur ppa. Marc Dr. Paul V

ppa. Marc van Gelder Dr. Paul Wimmer

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 20.06.2022 N° Client 35004955

RAPPORT D'ANALYSES

ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du symbole " *) ".

accrédités selon la norme

paramètres réalisés par AL-West BV sont

n° Cde 1165024 A2205-313_EPFLi_Combleux_sol

N° échant. 365379 Solide / Eluat

Spécification des échantillons S15 (2-3)

	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Chlorures (CI)	mg/l	0,8	0,1	+/- 10	Conforme à ISO 15923-1
Sulfates (SO4)	mg/l	7,4	5	+/- 10	Conforme à ISO 15923-1
COT	mg/l	<1,0	1		conforme EN 16192
Métaux sur éluat					
Antimoine (Sb)	µg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Arsenic (As)	µg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Baryum (Ba)	μg/l	15	10	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Cadmium (Cd)	μg/l	<0,1	0,1		Conforme à EN-ISO 17294-2 (2004)
Chrome (Cr)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)
Cuivre (Cu)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)
Mercure	μg/l	° <0,03	0,03		méthode interne (conforme NEN- EN-ISO 12846)
Molybdène (Mo)	μg/l	46	5	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Nickel (Ni)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Plomb (Pb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Sélénium (Se)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Zinc (Zn)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé.

Le calcul de l' incertitude de mesure analytique combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l' expression de l' incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordtest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d' élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance).

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Début des analyses: 10.06.2022 Fin des analyses: 17.06.2022

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

(Styl-

AL-West B.V. Mme Fatima-Zahra Saati, Tel. 33/380680132 Chargée relation clientèle

accrédités et/ou externalisés sont marqués du symbole " *) ".

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

ENVISOL 2-4, rue Hector Berlioz 38110 LA TOUR DU PIN **FRANCE**

> Date 20.06.2022 N° Client 35004955

RAPPORT D'ANALYSES

n° Cde 1165024 A2205-313_EPFLi_Combleux_sol

N° échant. 365380 Solide / Eluat

Date de validation 10.06.2022 Prélèvement 07.06.2022 Prélèvement par: Client Spécification des échantillons S3 (0-1)

Spécification des échantillons		3 (0-1)		Limite	Incert.	
	Unité		Résultat	Quant.	Résultat %	Méthode
Lixiviation						
Fraction >4mm (EN12457-2)	%	•	4,1	0,1		Selon norme lixiviation
Masse brute Mh pour lixiviation	*) g	•	120	1		Selon norme lixiviation
Lixiviation (EN 12457-2)		•				NF EN 12457-2
Volume de lixiviant L ajouté pour l'extraction	on *) ml		900	1		Selon norme lixiviation
Prétraitement des échantille	ons					
Masse échantillon total inférieure à 2 kg	kg	•	0,62	0		
Prétraitement de l'échantillon		•				Conforme à NEN-EN 1617
Matière sèche	%	0	78,5	0,01	+/- 1	NEN-EN 15934 ; EN128
Calcul des Fractions soluble	es					
Fraction soluble cumulé (var. L/S)	*) mg/kg Ms		1300	1000		Selon norme lixiviation
Antimoine cumulé (var. L/S)	*) mg/kg Ms		0 - 0,05	0,05		Selon norme lixiviation
Arsenic cumulé (var. L/S)	*) mg/kg Ms		0 - 0,05	0,05		Selon norme lixiviation
Baryum cumulé (var. L/S)	*) mg/kg Ms		0,21	0,1		Selon norme lixiviation
Cadmium cumulé (var. L/S)	*) mg/kg Ms		0 - 0,001	0,001		Selon norme lixiviation
Chlorures cumulé (var. L/S)	*) mg/kg Ms		9,0	1		Selon norme lixiviation
Chrome cumulé (var. L/S)	*) mg/kg Ms		0,02	0,02		Selon norme lixiviation
COT cumulé (var. L/S)	*) mg/kg Ms		15	10		Selon norme lixiviation
Cuivre cumulé (var. L/S)	*) mg/kg Ms		0,03	0,02		Selon norme lixiviation
Fluorures cumulé (var. L/S)	*) mg/kg Ms		7,0	1		Selon norme lixiviation
Indice phénol cumulé (var. L/S)	*) mg/kg Ms		0 - 0,1	0,1		Selon norme lixiviation
Mercure cumulé (var. L/S)	*) mg/kg Ms		0 - 0,0003	0,0003		Selon norme lixiviation
Molybdène cumulé (var. L/S)	*) mg/kg Ms		0,10	0,05		Selon norme lixiviation
Nickel cumulé (var. L/S)	*) mg/kg Ms		0 - 0,05	0,05		Selon norme lixiviation
Plomb cumulé (var. L/S)	*) mg/kg Ms		0 - 0,05	0,05		Selon norme lixiviation
Sélénium cumulé (var. L/S)	*) mg/kg Ms		0 - 0,05	0,05		Selon norme lixiviation
Sulfates cumulé (var. L/S)	*) mg/kg Ms		440	50		Selon norme lixiviation
Zinc cumulé (var. L/S)	*) mg/kg Ms		0 - 0,02	0,02		Selon norme lixiviation
Analyses Physico-chimique	es					
pH-H2O		0	8,4	0,1	+/- 10	Cf. NEN-ISO 10390 (sol uniquement)
COT Carbone Organique Total	mg/kg Ms		8800	1000	+/- 16	conforme ISO 10694 (2008
Prétraitement pour analyses	s des métaux	(
Minéralisation à l'eau régale		•				NF-EN 16174; NF EN 13657 (déchets)

page 1 de 4 **RvA** L 005

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

RAPPORT D'ANALYSES

	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Métaux					
Arsenic (As)	mg/kg Ms	8,0	1	+/- 15	Conforme à EN-ISO 11885, EN 16174
Cadmium (Cd)	mg/kg Ms	<0,1	0,1		Conforme à EN-ISO 11885, EN 16174
Chrome (Cr)	mg/kg Ms	12	0,2	+/- 12	Conforme à EN-ISO 11885, EN 16174
Cuivre (Cu)	mg/kg Ms	3,9	0,2	+/- 20	Conforme à EN-ISO 11885, EN 16174
Mercure (Hg)	mg/kg Ms	0,06	0,05	+/- 20	Conforme à ISO 16772 et EN 16174
Nickel (Ni)	mg/kg Ms	8,2	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Plomb (Pb)	mg/kg Ms	9,7	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Zinc (Zn)	mg/kg Ms	21	1	+/- 22	Conforme à EN-ISO 11885, EN 16174

Hydrocarbures A	Aromatique	s Pol	ycy	/cliq	ues ((ISO))

					Date	20.06.20
					N° Client	350049
RAPPORT D'ANALYSES						
n° Cde	1165024 A	2205-313_E	EPFLi_C	combleux_s	ol	
N° échant.	365380 So	lide / Eluat				
Spécification des échantillons	S3 (0-1)					
•	. ,		Limite	Incert.		
	Unité	Résultat	Quant.	Résultat %	Méthode	
Métaux						
Arsenic (As)	mg/kg Ms	8,0	1	+/- 15	Conforme	à EN-ISO 11885, E 16174
Cadmium (Cd)	mg/kg Ms	<0,1	0,1		Conforme	à EN-ISO 11885, E
Chrome (Cr)	mg/kg Ms	12	0,2	+/- 12	Conforme	16174 à EN-ISO 11885, E
. ,	mg/kg Ms			+/- 20	Conforme	16174 à EN-ISO 11885, E
Cuivre (Cu)		3,9	0,2			16174
Mercure (Hg)	mg/kg Ms	0,06	0,05	+/- 20	Conform	e à ISO 16772 et EN 16174
Nickel (Ni)	mg/kg Ms	8,2	0,5	+/- 11	Conforme	à EN-ISO 11885, E 16174
Plomb (Pb)	mg/kg Ms	9,7	0,5	+/- 11	Conforme	à EN-ISO 11885, E
Zinc (Zn)	mg/kg Ms	21	1	+/- 22	Conforme	16174 à EN-ISO 11885, E
ZITIC (ZIT)	ilig/kg ivis	21	ı	+/- 22	Comonne	16174
Hydrocarbures Aromatiques)				
Naphtalène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Acénaphtylène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Acénaphtène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Fluorène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Phénanthrène	mg/kg Ms	0,68	0,05	+/- 20		ent à NF EN 1618
Anthracène	mg/kg Ms	0,10	0,05	+/- 24	équival	ent à NF EN 1618
Fluoranthène	mg/kg Ms	0,92	0,05	+/- 17	équival	ent à NF EN 1618
Pyrène	mg/kg Ms	0,79	0,05	+/- 19	équival	ent à NF EN 1618
Benzo(a)anthracène	mg/kg Ms	0,41	0,05	+/- 14	équival	ent à NF EN 1618
Chrysène	mg/kg Ms	0,47	0,05	+/- 14	équival	ent à NF EN 1618
Benzo(b)fluoranthène	mg/kg Ms	0,45	0,05	+/- 12	équival	ent à NF EN 1618
Benzo(k)fluoranthène	mg/kg Ms	0,23	0,05	+/- 14		ent à NF EN 1618
Benzo(a)pyrène	mg/kg Ms	0,47	0,05	+/- 14		ent à NF EN 1618
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Benzo(g,h,i)pérylène	mg/kg Ms	0,29	0,05	+/- 14		ent à NF EN 1618
Indéno(1,2,3-cd)pyrène	mg/kg Ms	0,36	0,05	+/- 17		ent à NF EN 1618
HAP (6 Borneff) - somme	mg/kg Ms	2,72	0,00	1, 1,		ent à NF EN 1618
Somme HAP (VROM)	mg/kg Ms	3,93 ^{x)}				ent à NF EN 1618
HAP (EPA) - somme	mg/kg Ms	5,17 ×)				ent à NF EN 1618
	ilig/kg ivis	3,17			equival	SILLA IVI LIV 1010
Composés aromatiques		1				
Benzène	mg/kg Ms	<0,050	0,05			ISO 22155
Toluène	mg/kg Ms	<0,050	0,05			ISO 22155
Ethylbenzène	mg/kg Ms	<0,050	0,05			ISO 22155
m,p-Xylène	mg/kg Ms	<0,10	0,1			ISO 22155
o-Xylène	mg/kg Ms	<0,050	0,05			ISO 22155
Naphtalène	mg/kg Ms	<0,10	0,1			ISO 22155
Somme Xylènes	mg/kg Ms	n.d.				ISO 22155
BTEX total	*) mg/kg Ms	n.d.				ISO 22155
COHV						
Chlorure de Vinyle	mg/kg Ms	<0,02	0,02			ISO 22155
Dichlorométhane	mg/kg Ms	<0,02	0,02	+		ISO 22155
Trichlorométhane	mg/kg Ms	<0,05	0,05	+		ISO 22155 ISO 22155
				+		
Tétrachlorométhane	mg/kg Ms	<0,05	0,05			ISO 22155

ä	Composes aromatiques				
Ĕ	Benzène	mg/kg Ms	<0,050	0,05	ISO 22155
š	Toluène	mg/kg Ms	<0,050	0,05	ISO 22155
ń	Ethylbenzène	mg/kg Ms	<0,050	0,05	ISO 22155
ess	m,p-Xylène	mg/kg Ms	<0,10	0,1	ISO 22155
>	o-Xylène	mg/kg Ms	<0,050	0,05	ISO 22155
₹	Naphtalène	mg/kg Ms	<0,10	0,1	ISO 22155
ba	Somme Xylènes	mg/kg Ms	n.d.		ISO 22155
S	BTEX total	mg/kg Ms	n.d.		ISO 22155

COHV

ĸ	33.11				
_	Chlorure de Vinyle	mg/kg Ms	<0,02	0,02	ISO 22155
ב ב	Dichlorométhane	mg/kg Ms	<0,05	0,05	ISO 22155
=	Trichlorométhane	mg/kg Ms	<0,05	0,05	ISO 22155
<u>8</u>	Tétrachlorométhane	mg/kg Ms	<0,05	0,05	ISO 22155

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

5		Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
n D	Totalala na (da de) a				Ttooditat 70	
2	Trichloroéthylène	mg/kg Ms	<0,05	0,05		ISO 22155
<u> </u>	Tétrachloroéthylène	mg/kg Ms	<0,05	0,05		ISO 22155
פַ	1,1,1-Trichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
Ď	1,1,2-Trichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
5	1,1-Dichloroéthane	mg/kg Ms	<0,10	0,1		ISO 22155
n O	1,2-Dichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
ב ב	cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	0,025		ISO 22155
ŭ	1,1-Dichloroéthylène	mg/kg Ms	<0,10	0,1		ISO 22155
รู้	Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	0,025		ISO 22155
ŝ	Somme cis/trans-1,2-Dichloroéthylènes	mg/kg Ms	n.d.			ISO 22155

Hydrocarbures to	otaux (ISO)
------------------	-------------

nyurocarbures totaux (150)					
Fraction aliphatique C5-C6	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Fraction C5-C10	mg/kg Ms	<1,0 ×)	1		conforme à NEN-EN-ISO 16558-1
Fraction >C6-C8	mg/kg Ms	<0,40 x)	0,4		conforme à NEN-EN-ISO 16558-1
Fraction C8-C10	mg/kg Ms	<0,40 x)	0,4		conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Hydrocarbures totaux C10-C40	mg/kg Ms	47,9	20	+/- 21	ISO 16703
Fraction C10-C12	mg/kg Ms	<4,0	4		ISO 16703
Fraction C12-C16	mg/kg Ms	<4,0	4		ISO 16703
Fraction C16-C20	mg/kg Ms	6,4	2	+/- 21	ISO 16703
Fraction C20-C24	mg/kg Ms	5,9	2	+/- 21	ISO 16703
Fraction C24-C28	mg/kg Ms	9,7	2	+/- 21	ISO 16703
Fraction C28-C32	mg/kg Ms	9,9	2	+/- 21	ISO 16703
Fraction C32-C36	mg/kg Ms	7,6	2	+/- 21	ISO 16703
Fraction C36-C40	mg/kg Ms	4,3	2	+/- 21	ISO 16703

Polychlorobiphényles

Somme 6 PCB	mg/kg Ms	0,043 ×)			NEN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	0,046 x)			NEN-EN 16167
PCB (28)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
PCB (52)	mg/kg Ms	0,001	0,001	+/- 33	NEN-EN 16167
PCB (101)	mg/kg Ms	0,005	0,001	+/- 34	NEN-EN 16167
PCB (118)	mg/kg Ms	0,003	0,001	+/- 19	NEN-EN 16167
PCB (138)	mg/kg Ms	0,013	0,001	+/- 30	NEN-EN 16167
PCB (153)	mg/kg Ms	0,014	0,001	+/- 22	NEN-EN 16167
PCB (180)	mg/kg Ms	0,010	0,001	+/- 12	NEN-EN 16167

Analyses sur éluat après lixiviation

ceioamis RA						Date	20.06.202
	APPORT D'ANALYSES					N° Client	3500495
		4405004	10005 040 5			- 1	
က္	Cde		A2205-313_E	PFLI_C	ombieux_s	OI	
ğΝ°	° échant.		Solide / Eluat				
Ē Sp	pécification des échantillons	S3 (0-1)					
JUC O			57 11 1	Limite	Incert.	****	
Little Sparametres non accredites 6/00 exemalises sont series les parametres non accredite for series les parametres n		Unité	Résultat	Quant.	Résultat %	Méthode	9
<u>®</u> Tri	ichloroéthylène	mg/kg Ms	<0,05	0,05			ISO 22155
g Té	étrachloroéthylène	mg/kg Ms	<0,05	0,05			ISO 22155
<u>1,</u>	1,1-Trichloroéthane	mg/kg Ms	<0,05	0,05			ISO 22155
1,	1,2-Trichloroéthane	mg/kg Ms	<0,05	0,05			ISO 22155
1,	1-Dichloroéthane	mg/kg Ms	<0,10	0,1			ISO 22155
γ 1,2	2-Dichloroéthane	mg/kg Ms mg/kg Ms	<0,05	0,05			ISO 22155
	s-1,2-Dichloroéthène 1-Dichloroéthylène	mg/kg Ms	<0,025 <0,10	0,025 0,1			ISO 22155 ISO 22155
	rans-1,2-Dichloroéthylène	mg/kg Ms	<0,10	0,025			ISO 22155
o So	mme cis/trans-1,2-Dichloroéthylènes	mg/kg Ms	n.d.	0,023			ISO 22155
2		mg/ng mo	ii.u.				100 22 100
יים ופּצ תו	ydrocarbures totaux (ISO)		0.00	0.0		oonform	e à NEN-EN-ISO 16558-1
	raction aliphatique C5-C6	mg/kg Ms	<0,20 <1.0 ×)	0,2			e à NEN-EN-ISO 16558-1
<u> </u>	raction C5-C10 raction >C6-C8	mg/kg Ms mg/kg Ms	<1,0 ^{x)} <0,40 ^{x)}	1			e à NEN-EN-ISO 16558-1
o Fr	action C8-C10	mg/kg Ms	<0,40 ×	0,4 0,4			e à NEN-EN-ISO 16558-1
i Fr	raction aliphatique >C6-C8	mg/kg Ms	<0,40	0,4			e à NEN-EN-ISO 16558-1
	action aromatique >C6-C8	mg/kg Ms	<0,20	0,2			e à NEN-EN-ISO 16558-1
Ď Fr	raction aliphatique >C8-C10	mg/kg Ms	<0,20	0,2			e à NEN-EN-ISO 16558-1
S Fr	raction aromatique >C8-C10	mg/kg Ms	<0,20	0,2			e à NEN-EN-ISO 16558-1
Z H	ydrocarbures totaux C10-C40	mg/kg Ms	47,9	20	+/- 21		ISO 16703
	action C10-C12	*) mg/kg Ms	<4,0	4	.,		ISO 16703
	action C12-C16	*) mg/kg Ms	<4,0	4			ISO 16703
	action C16-C20	*) mg/kg Ms	6,4	2	+/- 21		ISO 16703
Ş Fr	action C20-C24	*) mg/kg Ms	5,9	2	+/- 21		ISO 16703
Fra	action C24-C28	*) mg/kg Ms	9,7	2	+/- 21		ISO 16703
Fr	action C28-C32	*) mg/kg Ms	9,9	2	+/- 21		ISO 16703
	action C32-C36	*) mg/kg Ms	7,6	2	+/- 21		ISO 16703
ੁ Fra	action C36-C40	*) mg/kg Ms	4,3	2	+/- 21		ISO 16703
<u>B</u> Pc	olychlorobiphényles						
	omme 6 PCB	mg/kg Ms	0,043 ×)			N	IEN-EN 16167
Sc	omme 7 PCB (Ballschmiter)	mg/kg Ms	0,046 x)				IEN-EN 16167
P(CB (28)	mg/kg Ms	<0,001	0,001		N	IEN-EN 16167
ğ PC	CB (52)	mg/kg Ms	0,001	0,001	+/- 33		IEN-EN 16167
ig PC	CB (101)	mg/kg Ms	0,005	0,001	+/- 34		IEN-EN 16167
	CB (118)	mg/kg Ms	0,003	0,001	+/- 19		IEN-EN 16167
	CB (138)	mg/kg Ms	0,013	0,001	+/- 30		IEN-EN 16167
	CB (153)	mg/kg Ms	0,014	0,001	+/- 22		IEN-EN 16167
g PC	CB (180)	mg/kg Ms	0,010	0,001	+/- 12	N	IEN-EN 16167
iA ౖ	nalyses sur éluat après lixiv	riation					
₹ L/\$	S cumulé	ml/g	10,0	0,1		Sele	on norme lixiviation
g Co	onductivité électrique	μS/cm	200	5	+/- 10	Seld	on norme lixiviation
g p⊢			8,5	0	+/- 5		on norme lixiviation
ਜ਼ੂ ∐e	empérature	°C	20,5	0		Sele	on norme lixiviation
် Ar	nalyses Physico-chimiques	sur éluat					
₽ Ré	ésidu à sec	mg/l	130	100	+/- 22	Equiva	lent à NF EN ISO 15216
	uorures (F)	mg/l	0,7	0,1	+/- 10	Conforme	à ISO 10359-1, conform
bar 2	dice phénol	mg/l	<0,010	0,01		, ,	à EN 16192 IEN-EN 16192
	aloe prierioi	IIIg/I	<u,u i="" td="" u<=""><td>0,01</td><td></td><td>ı ı</td><td>ILIN-LIN TOTEZ</td></u,u>	0,01		ı ı	ILIN-LIN TOTEZ

Analyses Physico-chimiques sur éluat

ı٨						
5	Résidu à sec	mg/l	130	100	+/- 22	Equivalent à NF EN ISO 15216
<u></u>	Fluorures (F)	mg/l	0,7	0,1	+/- 10	Conforme à ISO 10359-1, conforme à EN 16192
5	Indice phénol	ma/l	<0.010	0,01		NEN-EN 16192

page 3 de 4 **RvA** L 005

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 20.06.2022 N° Client 35004955

RAPPORT D'ANALYSES

ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du symbole " *) ".

accrédités selon la norme

paramètres réalisés par AL-West BV sont

n° Cde 1165024 A2205-313_EPFLi_Combleux_sol

N° échant. 365380 Solide / Eluat

Spécification des échantillons S3 (0-1)

	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Chlorures (CI)	mg/l	0,9	0,1	+/- 10	Conforme à ISO 15923-1
Sulfates (SO4)	mg/l	44	5	+/- 10	Conforme à ISO 15923-1
COT	mg/l	1,5	1	+/- 10	conforme EN 16192
Métaux sur éluat					
Antimoine (Sb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Arsenic (As)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Baryum (Ba)	μg/l	21	10	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Cadmium (Cd)	μg/l	<0,1	0,1		Conforme à EN-ISO 17294-2 (2004)
Chrome (Cr)	μg/l	2,1	2	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Cuivre (Cu)	μg/l	3,1	2	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Mercure	μg/l	° <0,03	0,03		méthode interne (conforme NEN- EN-ISO 12846)
Molybdène (Mo)	μg/l	9,6	5	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Nickel (Ni)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Plomb (Pb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Sélénium (Se)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Zinc (Zn)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)

Limita

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé.

Le calcul de l' incertitude de mesure analytique combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l' expression de l' incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordtest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d' élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance).

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Début des analyses: 10.06.2022 Fin des analyses: 17.06.2022

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

(Styl-

AL-West B.V. Mme Fatima-Zahra Saati, Tel. 33/380680132 Chargée relation clientèle

accrédités et/ou externalisés sont marqués du symbole " *) ".

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

ENVISOL 2-4, rue Hector Berlioz 38110 LA TOUR DU PIN **FRANCE**

> Date 20.06.2022 N° Client 35004955

RAPPORT D'ANALYSES

n° Cde 1165024 A2205-313_EPFLi_Combleux_sol

N° échant. 365381 Solide / Eluat

Date de validation 10.06.2022 Prélèvement 07.06.2022 Prélèvement par: Client Spécification des échantillons S16 (0-1)

•		•	Limite	Incert.	
	Unité	Résultat	Quant.	Résultat %	Méthode
Lixiviation					
Fraction >4mm (EN12457-2)	%	° 4,7	0,1		Selon norme lixiviation
Masse brute Mh pour lixiviation	*) g	° 110	1		Selon norme lixiviation
Lixiviation (EN 12457-2)		۰			NF EN 12457-2
Volume de lixiviant L ajouté pour l'extracti	on *) ml	900	1		Selon norme lixiviation
Prétraitement des échantill	ons				
Masse échantillon total inférieure à 2 kg	kg	° 0,62	0		
Prétraitement de l'échantillon		0			Conforme à NEN-EN 16
Matière sèche	%	° 87,5	0,01	+/- 1	NEN-EN 15934 ; EN12
Calcul des Fractions solub	les				
Fraction soluble cumulé (var. L/S)	*) mg/kg Ms	0 - 1000	1000		Selon norme lixiviation
Antimoine cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Arsenic cumulé (var. L/S)	*) mg/kg Ms	0,34	0,05		Selon norme lixiviation
Baryum cumulé (var. L/S)	*) mg/kg Ms	0,12	0,1		Selon norme lixiviation
Cadmium cumulé (var. L/S)	*) mg/kg Ms	0 - 0,001	0,001		Selon norme lixiviation
Chlorures cumulé (var. L/S)	*) mg/kg Ms	12	1		Selon norme lixiviation
Chrome cumulé (var. L/S)	*) mg/kg Ms	0 - 0,02	0,02		Selon norme lixiviation
COT cumulé (var. L/S)	*) mg/kg Ms	140	10		Selon norme lixiviation
Cuivre cumulé (var. L/S)	*) mg/kg Ms	0,35	0,02		Selon norme lixiviation
Fluorures cumulé (var. L/S)	*) mg/kg Ms	4,0	1		Selon norme lixiviation
Indice phénol cumulé (var. L/S)	*) mg/kg Ms	0 - 0,1	0,1		Selon norme lixiviation
Mercure cumulé (var. L/S)	*) mg/kg Ms	0 - 0,0003	0,0003		Selon norme lixiviation
Molybdène cumulé (var. L/S)	*) mg/kg Ms	0,08	0,05		Selon norme lixiviation
Nickel cumulé (var. L/S)	*) mg/kg Ms	0,08	0,05		Selon norme lixiviation
Plomb cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Sélénium cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Sulfates cumulé (var. L/S)	*) mg/kg Ms	120	50		Selon norme lixiviation
Zinc cumulé (var. L/S)	*) mg/kg Ms	0,02	0,02		Selon norme lixiviation
Analyses Physico-chimique	es				
pH-H2O		° 9,2	0,1	+/- 10	Cf. NEN-ISO 10390 (sol uniquement)
COT Carbone Organique Total	mg/kg Ms	5800	1000	+/- 16	conforme ISO 10694 (20
Prétraitement pour analyse	s des métaux				
Minéralisation à l'eau régale		0			NF-EN 16174; NF EN 1369 (déchets)

Analyses	Phys	ico-chi	imiques
----------	------	---------	---------

g pH-H2O		° 9,2	0,1	+/- 10	Cf. NEN-ISO 10390 (sol uniquement)
COT Carbone Organique Total	mg/kg Ms	5800	1000	+/- 16	conforme ISO 10694 (2008)

page 1 de 4

AL-West B.V.
Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 20.06.2022 N° Client 35004955

RAPPORT D'ANALYSES

n° Cde 1165024 A2205-313_EPFLi_Combleux_sol

N° échant. 365381 Solide / Eluat

S16 (0-1) Spécification des échantillons

Specification des echantillons	516 (0-1)				
	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Métaux					
Arsenic (As)	mg/kg Ms	6,4	1	+/- 15	Conforme à EN-ISO 11885, EN 16174
Cadmium (Cd)	mg/kg Ms	<0,1	0,1		Conforme à EN-ISO 11885, EN 16174
Chrome (Cr)	mg/kg Ms	16	0,2	+/- 12	Conforme à EN-ISO 11885, EN 16174
Cuivre (Cu)	mg/kg Ms	7,5	0,2	+/- 20	Conforme à EN-ISO 11885, EN 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conforme à ISO 16772 et EN 16174
Nickel (Ni)	mg/kg Ms	9,6	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Plomb (Pb)	mg/kg Ms	17	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Zinc (Zn)	mg/kg Ms	29	1	+/- 22	Conforme à EN-ISO 11885, EN 16174
Hydrocarbures Aromatiques	Polycycliques (IS	O)			
Naphtalène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Acénaphtylène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Acénaphtène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Fluorène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Phénanthrène	ma/ka Ms	< 0.050	0.05		éguivalent à NF EN 16181

(
Hydrocarbures Aromatiques	s Polycycliques (I	SO)		
Naphtalène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Acénaphtylène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Acénaphtène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Fluorène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Phénanthrène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Anthracène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Fluoranthène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Pyrène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Benzo(a)anthracène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Chrysène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Benzo(b)fluoranthène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Benzo(k)fluoranthène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Benzo(a)pyrène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
HAP (6 Borneff) - somme	mg/kg Ms	n.d.		équivalent à NF EN 16181
Somme HAP (VROM)	mg/kg Ms	n.d.		équivalent à NF EN 16181
HAP (EPA) - somme	mg/kg Ms	n.d.		équivalent à NF EN 16181
Composés aromatiques				

^	,		4.
Com	noses	aroma	atiques

ď	Composes aromanques				
Ĕ	Benzène	mg/kg Ms	<0,050	0,05	ISO 22155
ń	Toluène	mg/kg Ms	<0,050	0,05	ISO 22155
2	Ethylbenzène	mg/kg Ms	<0,050	0,05	ISO 22155
ŝ	m,p-Xylène	mg/kg Ms	<0,10	0,1	ISO 22155
>	o-Xylène	mg/kg Ms	<0,050	0,05	ISO 22155
ζ	Naphtalène	mg/kg Ms	<0,10	0,1	ISO 22155
ğ	Somme Xylènes	mg/kg Ms	n.d.		ISO 22155
20	BTEX total	mg/kg Ms	n.d.		ISO 22155
מ					

COHV

Les paramètres réalisés par AL-West BV sont accrédités selon la norme EN ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du symbole " *) ".

₹	00111				
-	Chlorure de Vinyle	mg/kg Ms	<0,02	0,02	ISO 22155
5	Dichlorométhane	mg/kg Ms	<0,05	0,05	ISO 22155
2	Trichlorométhane	mg/kg Ms	<0,05	0,05	ISO 22155
5	Tétrachlorométhane	mg/kg Ms	<0,05	0,05	ISO 22155

page 2 de 4 **RvA** L 005

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Trichloroéthylène	mg/kg Ms	<0,05	0,05		ISO 22155
Tétrachloroéthylène	mg/kg Ms	<0,05	0,05		ISO 22155
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
1,1,2-Trichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
1,1-Dichloroéthane	mg/kg Ms	<0,10	0,1		ISO 22155
1,2-Dichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	0,025		ISO 22155
1,1-Dichloroéthylène	mg/kg Ms	<0,10	0,1		ISO 22155
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	0,025		ISO 22155
Somme cis/trans-1,2-Dichloroéthylènes	mg/kg Ms	n.d.			ISO 22155

Hvdrocarbures totaux (ISO)	Н١	vdrod	arbures	totaux	(ISO)
----------------------------	----	-------	---------	--------	-------

Tryurocarbures totaux (130)				
Fraction aliphatique C5-C6	mg/kg Ms	<0,20	0,2	conforme à NEN-EN-ISO 16558-1
Fraction C5-C10	mg/kg Ms	<1,0 ×)	1	conforme à NEN-EN-ISO 16558-1
Fraction >C6-C8	mg/kg Ms	<0,40 x)	0,4	conforme à NEN-EN-ISO 16558-1
Fraction C8-C10	mg/kg Ms	<0,40 x)	0,4	conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	0,2	conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	0,2	conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	0,2	conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	0,2	conforme à NEN-EN-ISO 16558-1
Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	20	ISO 16703
Fraction C10-C12	*) mg/kg Ms	<4,0	4	ISO 16703
Fraction C12-C16	*) mg/kg Ms	<4,0	4	ISO 16703
Fraction C16-C20	*) mg/kg Ms	<2,0	2	ISO 16703
Fraction C20-C24	*) mg/kg Ms	<2,0	2	ISO 16703
Fraction C24-C28	*) mg/kg Ms	<2,0	2	ISO 16703
Fraction C28-C32	*) mg/kg Ms	<2,0	2	ISO 16703
Fraction C32-C36	*) mg/kg Ms	<2,0	2	ISO 16703
Fraction C36-C40	*) mg/kg Ms	<2.0	2	ISO 16703

Polychlorobiphényles

Somme 6 PCB	mg/kg Ms	n.d.		NEN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.		NEN-EN 16167
PCB (28)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB (52)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB (101)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB (118)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB (138)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB (153)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB (180)	mg/kg Ms	<0,001	0,001	NEN-EN 16167

Analyses sur éluat après lixiviation

					Date	20.06.202
DARRORT BIANAL VOCO					N° Client	3500495
RAPPORT D'ANALYSES	4405004	A 000 F 040 F	-DEL: 0		-1	
n° Cde		A2205-313_E	PFLI_C	ombieux_s	OI	
N° échant.		Solide / Eluat				
Spécification des échantillons	S16 (0-1)				
	Lloitá	Dágultot	Limite	Incert.	Méthode	
	Unité	Résultat	Quant.	Résultat %	Methode	
Trichloroéthylène	mg/kg Ms	<0,05	0,05			ISO 22155
Tétrachloroéthylène 1,1,1-Trichloroéthane	mg/kg Ms mg/kg Ms	<0,05	0,05 0,05			ISO 22155 ISO 22155
1,1,2-Trichloroéthane	mg/kg Ms	<0,05 <0,05	0,05			ISO 22155
1,1-Dichloroéthane	mg/kg Ms	<0,10	0,03			ISO 22155
1,2-Dichloroéthane	mg/kg Ms	<0,05	0,05			ISO 22155
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	0,025			ISO 22155
1,1-Dichloroéthylène	mg/kg Ms	<0,10	0,1			ISO 22155
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	0,025			ISO 22155
Somme cis/trans-1,2-Dichloroéthylènes	mg/kg Ms	n.d.				ISO 22155
Hydrocarbures totaux (ISO)						
Fraction aliphatique C5-C6	mg/kg Ms	<0,20	0,2		conforme	à NEN-EN-ISO 16558-
Fraction C5-C10	mg/kg Ms	<1,0 ×)	1			à NEN-EN-ISO 16558-
Fraction >C6-C8	mg/kg Ms	<0,40 ×)	0,4			à NEN-EN-ISO 16558-
Fraction C8-C10	mg/kg Ms	<0,40 ×)	0,4			à NEN-EN-ISO 16558-
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	0,2			à NEN-EN-ISO 16558-
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	0,2			à NEN-EN-ISO 16558
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	0,2			à NEN-EN-ISO 16558
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	0,2		conforme	à NEN-EN-ISO 16558-
Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	20			ISO 16703
Fraction C10-C12 Fraction C12-C16	*) mg/kg Ms *) mg/kg Ms	<4,0 <4,0	4			ISO 16703 ISO 16703
Fraction C16-C20	*) mg/kg Ms	<2,0 <2,0	2			ISO 16703
Fraction C20-C24	*) mg/kg Ms	<2,0	2			ISO 16703
Fraction C24-C28	*) mg/kg Ms	<2,0	2			ISO 16703
Fraction C28-C32	*) mg/kg Ms	<2,0	2			ISO 16703
Fraction C32-C36	*) mg/kg Ms	<2,0	2			ISO 16703
Fraction C36-C40	*) mg/kg Ms	<2,0	2			ISO 16703
Polychlorobiphényles						
Somme 6 PCB	mg/kg Ms	n.d.			N	EN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.				EN-EN 16167
PCB (28)	mg/kg Ms	<0,001	0,001			EN-EN 16167
PCB (52)	mg/kg Ms	<0,001	0,001			EN-EN 16167
PCB (101)	mg/kg Ms	<0,001	0,001			EN-EN 16167
PCB (118)	mg/kg Ms	<0,001	0,001			EN-EN 16167
PCB (138)	mg/kg Ms	<0,001	0,001			EN-EN 16167
PCB (153)	mg/kg Ms	<0,001	0,001			EN-EN 16167
PCB (180)	mg/kg Ms	<0,001	0,001		N	EN-EN 16167
Analyses sur éluat après lixiv						
L/S cumulé	ml/g	10,0	0,1			n norme lixiviation
Conductivité électrique	μS/cm	110	5	+/- 10		n norme lixiviation
pH Tompératura	00	9,6	0	+/- 5		n norme lixiviation
Température	°C	20,3	0		Selo	n norme lixiviation
Analyses Physico-chimiques					1	A NE EN IOS :== :
Résidu à sec	mg/l	<100	100	1		ent à NF EN ISO 15216
Fluorures (F)	mg/l	0,4	0,1	+/- 10		à ISO 10359-1, conforn à EN 16192
Indice phénol	mg/l	<0,010	0,01		l N	EN-EN 16192

Analyses Physico-chimiques sur éluat

ppa. Marc van Gelder Dr. Paul Wimmer

5	Résidu à sec	mg/l	<100	100		Equivalent à NF EN ISO 15216
	Fluorures (F)	mg/l	0,4	0,1	+/- 10	Conforme à ISO 10359-1, conforme à EN 16192
3	Indice phénol	ma/l	<0.010	0.01		NEN-EN 16192

page 3 de 4 **RvA** L 005

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 20.06.2022 N° Client 35004955

RAPPORT D'ANALYSES

ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du symbole " *) ".

accrédités selon la norme

paramètres réalisés par AL-West BV sont

n° Cde 1165024 A2205-313_EPFLi_Combleux_sol

N° échant. 365381 Solide / Eluat

Spécification des échantillons S16 (0-1)

	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Chlorures (CI)	mg/l	1,2	0,1	+/- 10	Conforme à ISO 15923-1
Sulfates (SO4)	mg/l	12	5	+/- 10	Conforme à ISO 15923-1
COT	mg/l	14	1	+/- 10	conforme EN 16192
Métaux sur éluat					
Antimoine (Sb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Arsenic (As)	μg/l	34	5	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Baryum (Ba)	μg/l	12	10	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Cadmium (Cd)	μg/l	<0,1	0,1		Conforme à EN-ISO 17294-2 (2004)
Chrome (Cr)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)
Cuivre (Cu)	μg/l	35	2	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Mercure	μg/l	° <0,03	0,03		méthode interne (conforme NEN- EN-ISO 12846)
Molybdène (Mo)	μg/l	8,4	5	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Nickel (Ni)	μg/l	8,2	5	+/- 11	Conforme à EN-ISO 17294-2 (2004)
Plomb (Pb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Sélénium (Se)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Zinc (Zn)	μg/l	2,3	2	+/- 10	Conforme à EN-ISO 17294-2 (2004)

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé.

Le calcul de l'incertitude de mesure analytique combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l' expression de l' incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordtest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d'élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance).

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Début des analyses: 10.06.2022 Fin des analyses: 17.06.2022

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

AL-West B.V. Mme Fatima-Zahra Saati, Tel. 33/380680132 Chargée relation clientèle

et/ou externalisés sont marqués du symbole " *) ".

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

ENVISOL 2-4, rue Hector Berlioz 38110 LA TOUR DU PIN **FRANCE**

> 20.06.2022 Date N° Client 35004955

RAPPORT D'ANALYSES

n° Cde 1165024 A2205-313_EPFLi_Combleux_sol

N° échant. 365382 Solide / Eluat

Date de validation 10.06.2022 Prélèvement 07.06.2022 Prélèvement par: Client Spécification des échantillons S19 (0.10-1)

	Unité		Résultat	Quant.	Résultat %	Méthode
Lixiviation						
Fraction >4mm (EN12457-2)	%	•	1,2	0,1		Selon norme lixiviation
Masse brute Mh pour lixiviation *)	g	•	110	1		Selon norme lixiviation
Lixiviation (EN 12457-2)		۰				NF EN 12457-2
Volume de lixiviant L ajouté pour l'extraction *)	ml		900	1		Selon norme lixiviation
Prétraitement des échantillons	i					
Masse échantillon total inférieure à 2 kg	ka	0	0.59	0		

Limite

Incert.

Masse échantillon total inférieure à 2 kg	kg	0	0,59	0		
Prétraitement de l'échantillon		0				Conforme à NEN-EN 16179
Matière sèche	%	0	81,7	0,01	+/- 1	NEN-EN 15934 ; EN12880

Calcul des Fractions solubles

2	Fraction soluble cumulé (var. L/S) *)	mg/kg Ms	0 - 1000	1000	Selon norme lixiviation
-	Antimoine cumulé (var. L/S) *)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
ī	Arsenic cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
	Baryum cumulé (var. L/S)	mg/kg Ms	0 - 0,1	0,1	Selon norme lixiviation
2	Cadmium cumulé (var. L/S)	mg/kg Ms	0 - 0,001	0,001	Selon norme lixiviation
<u> </u>	Chlorures cumulé (var. L/S)	mg/kg Ms	11	1	Selon norme lixiviation
5	Chrome cumulé (var. L/S)	mg/kg Ms	0 - 0,02	0,02	Selon norme lixiviation
000	COT cumulé (var. L/S)	mg/kg Ms	15	10	Selon norme lixiviation
	Cuivre cumulé (var. L/S)	mg/kg Ms	0 - 0,02	0,02	Selon norme lixiviation
ב	Fluorures cumulé (var. L/S) *)	mg/kg Ms	3,0	1	Selon norme lixiviation
3	Indice phénol cumulé (var. L/S) *)	mg/kg Ms	0 - 0,1	0,1	Selon norme lixiviation
=	Mercure cumulé (var. L/S)	mg/kg Ms	0 - 0,0003	0,0003	Selon norme lixiviation
2	Molybdène cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
2	Nickel cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
ŭ	Plomb cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
>	Sélénium cumulé (var. L/S)	mg/kg Ms	0 - 0.05	0.05	Selon norme lixiviation

3	Zinc cumulé (var. L/S)	*)	mg/kg Ms		0 - 0,02	0,02		Selon norme lixiviation
2	Analyses Physico-cl	himiques						
2	pH-H2O			0	8,7	0,1	+/- 10	Cf. NEN-ISO 10390 (sol uniquement)
2	COT Carbone Organiqu	e Total	mg/kg Ms		4600	1000	+/- 16	conforme ISO 10694 (2008)

60

50

Unité Unité Unité Unité Unité Unité Unité Unité Unité) (0.
ml kg mg/kg Ms	0
ml kg mg/kg Ms	0
ml Kg Mg/kg Ms	0
ml Kg Mg/kg Ms	0
ml Kg Kg Kg Mag/kg Ms mg/kg Ms	0
mg/kg Ms	•
mg/kg Ms	•
mg/kg Ms	•
mg/kg Ms	•
mg/kg Ms	
mg/kg Ms	•
mg/kg Ms	
mg/kg Ms	
mg/kg Ms	
mg/kg Ms	
ng/kg Ms ng/kg Ms ng/kg Ms ng/kg Ms ng/kg Ms	
ng/kg Ms ng/kg Ms ng/kg Ms ng/kg Ms	
ng/kg Ms ng/kg Ms ng/kg Ms	
ng/kg Ms ng/kg Ms	
ng/kg Ms	
na/ka Ms	
ng/ng me	
ng/kg Ms	
	0
ng/kg Ms	
métaux	
Include	0
	ng/kg Ms ng/kg Ms ng/kg Ms ng/kg Ms ng/kg Ms

NF-EN 16174; NF EN 13657 Minéralisation à l'eau régale (déchets)

> page 1 de 4 **RvA** L 005

Selon norme lixiviation

AL-West B.V.
Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

					Date N° Client	20.06.202 3500495
RAPPORT D'ANALYSES					N Ollent	3300493
n° Cde	116502	24 A2205-313_l	EPFLi_C	combleux_s	ol	
N° échant.	365382	Solide / Eluat				
Spécification des échantillons	S19 (0.					
opcomodion des conditions	0.10 (0.	10 1,	Limite	Incert.		
	Unité	Résultat		Résultat %	Méthode	
Métaux						
Arsenic (As)	mg/kg Ms	7,5	1	+/- 15	Conforme	e à EN-ISO 11885, El
Cadmium (Cd)	mg/kg Ms	<0,1	0,1		Conforme	<u>16174</u> e à EN-ISO 11885, El
				/ 40		16174 e à EN-ISO 11885, EN
Chrome (Cr)	mg/kg Ms	11	0,2	+/- 12		16174
Cuivre (Cu)	mg/kg Ms	2,7	0,2	+/- 20	Conform	e à EN-ISO 11885, Et 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conform	ne à ISO 16772 et EN
Nickel (Ni)	mg/kg Ms	6,8	0,5	+/- 11	Conforme	16174 e à EN-ISO 11885, El
,					Conform	16174 e à EN-ISO 11885, El
Plomb (Pb)	mg/kg Ms	5,0	0,5	+/- 11		16174
Zinc (Zn)	mg/kg Ms	15	1	+/- 22	Conforme	e à EN-ISO 11885, E 16174
Hydrocarbures Aromatiques I	Polycycliques (ISO)				
Naphtalène	mg/kg Ms	<0,050	0,05		éguiva	ent à NF EN 1618
Acénaphtylène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Acénaphtène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Fluorène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Phénanthrène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Anthracène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Fluoranthène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Pyrène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Benzo(a)anthracène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Chrysène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Benzo(b)fluoranthène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Benzo(k)fluoranthène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Benzo(a)pyrène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
HAP (6 Borneff) - somme	mg/kg Ms	n.d.	0,00			ent à NF EN 1618
Somme HAP (VROM)	mg/kg Ms	n.d.				ent à NF EN 1618
HAP (EPA) - somme	mg/kg Ms	n.d.				ent à NF EN 1618
	ing/kg W5	ii.u.			cquiva	CIRCUIT EN 1010
Composés aromatiques		2.250				100 00155
Benzène	mg/kg Ms	<0,050	0,05			ISO 22155
Toluène	mg/kg Ms	<0,050	0,05			ISO 22155
Ethylbenzène	mg/kg Ms	<0,050	0,05			ISO 22155
m,p-Xylène	mg/kg Ms	<0,10	0,1			ISO 22155
o-Xylène	mg/kg Ms	<0,050	0,05			ISO 22155
Naphtalène	mg/kg Ms	<0,10	0,1			ISO 22155
Somme Xylènes	mg/kg Ms	n.d.				ISO 22155
BTEX total	*) mg/kg Ms	n.d.				ISO 22155
COHV						
Chlorure de Vinyle	mg/kg Ms	<0,02	0,02			ISO 22155
Dichlorométhane	mg/kg Ms	<0,05	0,05			ISO 22155
Trichlorométhane	mg/kg Ms	<0,05	0,05			ISO 22155
Tétrachlorométhane	mg/kg Ms	<0,05	0,05			ISO 22155

₹	00111				
-	Chlorure de Vinyle	mg/kg Ms	<0,02	0,02	ISO 22155
5	Dichlorométhane	mg/kg Ms	<0,05	0,05	ISO 22155
2	Trichlorométhane	mg/kg Ms	<0,05	0,05	ISO 22155
5	Tétrachlorométhane	mg/kg Ms	<0,05	0,05	ISO 22155

RvA L 005

Directeur

ppa. Marc van Gelder Dr. Paul Wimmer

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

RAPPORT D'ANALYSES

			Limite	Incert.	
	Unité	Résultat	Quant.	Résultat %	Méthode
Trichloroéthylène	mg/kg Ms	<0,05	0,05		ISO 22155
Tétrachloroéthylène	mg/kg Ms	<0,05	0,05		ISO 22155
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
1,1,2-Trichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
1,1-Dichloroéthane	mg/kg Ms	<0,10	0,1		ISO 22155
1,2-Dichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	0,025		ISO 22155
1,1-Dichloroéthylène	mg/kg Ms	<0,10	0,1		ISO 22155
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	0,025		ISO 22155
Somme cis/trans-1,2-Dichloroéthylènes	mg/kg Ms	n.d.			ISO 22155

nyurocarbures totaux (150)				
Fraction aliphatique C5-C6	mg/kg Ms	<0,20	0,2	conforme à NEN-EN-ISO 16558-1
Fraction C5-C10	mg/kg Ms	<1,0 x)	1	conforme à NEN-EN-ISO 16558-1
Fraction >C6-C8	mg/kg Ms	<0,40 x)	0,4	conforme à NEN-EN-ISO 16558-1
Fraction C8-C10	mg/kg Ms	<0,40 x)	0,4	conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	0,2	conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	0,2	conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	0,2	conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	0,2	conforme à NEN-EN-ISO 16558-1
Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	20	ISO 16703
Fraction C10-C12	mg/kg Ms	<4,0	4	ISO 16703
Fraction C12-C16	mg/kg Ms	<4,0	4	ISO 16703
Fraction C16-C20	mg/kg Ms	<2,0	2	ISO 16703
Fraction C20-C24	mg/kg Ms	<2,0	2	ISO 16703
Fraction C24-C28	mg/kg Ms	<2,0	2	ISO 16703
Fraction C28-C32	mg/kg Ms	<2,0	2	ISO 16703
Fraction C32-C36	mg/kg Ms	<2,0	2	ISO 16703
Fraction C36-C40	mg/kg Ms	<2,0	2	ISO 16703

Polychlorobiphényles

Somme 6 PCB	mg/kg Ms	n.d.		NEN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.		NEN-EN 16167
PCB (28)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB (52)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB (101)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB (118)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB (138)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB (153)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB (180)	mg/kg Ms	<0,001	0,001	NEN-EN 16167

Analyses sur éluat après lixiviation

					Date N° Client	20.06.2022 35004955
RAPPORT D'ANALYSES					it olion	00001000
n° Cde	11650	24 A2205-313_E	EPFLi_C	ombleux_s	ol	
N° échant.	36538	2 Solide / Eluat				
Spécification des échantillons	S19 (0	.10-1)				
•	`	,	Limite	Incert.		
	Unité	Résultat	Quant.	Résultat %	Méthode	е
Trichloroéthylène	mg/kg Ms	<0,05	0,05			ISO 22155
Tétrachloroéthylène	mg/kg Ms	<0,05	0,05			ISO 22155
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	0,05			ISO 22155
1,1,2-Trichloroéthane	mg/kg Ms	<0,05	0,05			ISO 22155
1,1-Dichloroéthane	mg/kg Ms	<0,10	0,1			ISO 22155
1,2-Dichloroéthane cis-1,2-Dichloroéthène	mg/kg Ms mg/kg Ms	<0,05	0,05			ISO 22155 ISO 22155
1,1-Dichloroéthylène	mg/kg Ms	<0,025 <0,10	0,025 0,1			ISO 22155
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	0,025			ISO 22155
Somme cis/trans-1,2-Dichloroéthylènes	mg/kg Ms	n.d.	0,020			ISO 22155
Hydrocarbures totaux (ISO)						
Fraction aliphatique C5-C6	mg/kg Ms	<0,20	0,2		conform	e à NEN-EN-ISO 16558-1
Fraction C5-C10	mg/kg Ms	<1,0 x)	<u>0,</u> 1		conform	e à NEN-EN-ISO 16558-1
Fraction >C6-C8	mg/kg Ms	<0,40 ×)	0,4		conform	e à NEN-EN-ISO 16558-1
Fraction C8-C10	mg/kg Ms	<0,40 x)	0,4		conform	e à NEN-EN-ISO 16558-1
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	0,2			e à NEN-EN-ISO 16558-1
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	0,2			e à NEN-EN-ISO 16558-1
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	0,2			e à NEN-EN-ISO 16558-1
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	0,2		conform	e à NEN-EN-ISO 16558-1
Hydrocarbures totaux C10-C40 Fraction C10-C12	mg/kg Ms *) mg/kg Ms	<20,0 <4,0	20 4			ISO 16703 ISO 16703
Fraction C12-C16	*) mg/kg Ms	<4,0 <4,0	4			ISO 16703
Fraction C16-C20	*) mg/kg Ms	<2,0	2			ISO 16703
Fraction C20-C24	*) mg/kg Ms	<2,0	2			ISO 16703
Fraction C24-C28	*) mg/kg Ms	<2,0	2			ISO 16703
Fraction C28-C32	*) mg/kg Ms	<2,0	2			ISO 16703
Fraction C32-C36	*) mg/kg Ms	<2,0	2			ISO 16703
Fraction C36-C40	*) mg/kg Ms	<2,0	2			ISO 16703
Polychlorobiphényles						
Somme 6 PCB	mg/kg Ms	n.d.			N	NEN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.				NEN-EN 16167
PCB (28)	mg/kg Ms	<0,001	0,001			NEN-EN 16167
PCB (52)	mg/kg Ms	<0,001	0,001			NEN-EN 16167
PCB (101) PCB (118)	mg/kg Ms mg/kg Ms	<0,001 <0,001	0,001			NEN-EN 16167 NEN-EN 16167
PCB (138)	mg/kg Ms	<0,001	0,001			NEN-EN 16167
PCB (153)	mg/kg Ms	<0,001	0,001			NEN-EN 16167
PCB (180)	mg/kg Ms	<0,001	0,001			NEN-EN 16167
Analyses sur éluat après lixiv	/iation				•	
L/S cumulé	ml/g	10,0	0,1		Sele	on norme lixiviation
Conductivité électrique	μS/cm	81,3	5	+/- 10		on norme lixiviation
pH		8,3	0	+/- 5	Sele	on norme lixiviation
Température	°C	19,9	0		Sel	on norme lixiviation
Analyses Physico-chimiques	sur éluat					
Résidu à sec	mg/l	<100	100			lent à NF EN ISO 15216
	mg/l	0,3	0,1	+/- 10	Conform	e à ISO 10359-1, conforme
Fluorures (F)	1119/1	0,0	٥, ١	., .0		à EN 16192

Analyses Physico-chimiques sur éluat

5	Résidu à sec	mg/l	<100	100		Equivalent à NF EN ISO 15216
<u> </u>	Fluorures (F)	mg/l	0,3	0,1	+/- 10	Conforme à ISO 10359-1, conforme à EN 16192
5	Indice phénol	ma/l	<0.010	0.01		NEN-EN 16192

page 3 de 4 **RvA** L 005

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 20.06.2022 N° Client 35004955

RAPPORT D'ANALYSES

ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du symbole " *) ".

accrédités selon la norme

paramètres réalisés par AL-West BV sont

n° Cde 1165024 A2205-313_EPFLi_Combleux_sol

N° échant. 365382 Solide / Eluat

Spécification des échantillons S19 (0.10-1)

			Limite	Incert.	
	Unité	Résultat	Quant.	Résultat %	Méthode
Chlorures (CI)	mg/l	1,1	0,1	+/- 10	Conforme à ISO 15923-1
Sulfates (SO4)	mg/l	6,0	5	+/- 10	Conforme à ISO 15923-1
COT	mg/l	1,5	1	+/- 10	conforme EN 16192
Métaux sur éluat					
Antimoine (Sb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Arsenic (As)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Baryum (Ba)	μg/l	<10	10		Conforme à EN-ISO 17294-2 (2004)
Cadmium (Cd)	μg/l	<0,1	0,1		Conforme à EN-ISO 17294-2 (2004)
Chrome (Cr)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)
Cuivre (Cu)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)
Mercure	μg/l	° <0,03	0,03		méthode interne (conforme NEN- EN-ISO 12846)
Molybdène (Mo)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Nickel (Ni)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Plomb (Pb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Sélénium (Se)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Zinc (Zn)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé.

Le calcul de l' incertitude de mesure analytique combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l' expression de l' incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordtest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d' élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance).

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Début des analyses: 10.06.2022 Fin des analyses: 17.06.2022

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

(Styl

AL-West B.V. Mme Fatima-Zahra Saati, Tel. 33/380680132 Chargée relation clientèle

accrédités et/ou externalisés sont marqués du symbole " *) ".

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

ENVISOL 2-4, rue Hector Berlioz 38110 LA TOUR DU PIN **FRANCE**

> Date 20.06.2022 N° Client 35004955

RAPPORT D'ANALYSES

n° Cde 1165024 A2205-313_EPFLi_Combleux_sol

N° échant. 365383 Solide / Eluat

Date de validation 10.06.2022 Prélèvement 07.06.2022 Prélèvement par: Client Spécification des échantillons S18 (2-3)

<u>ה</u>		Unité		Résultat	Quant.	Résultat %	Méthode
<u></u>	Lixiviation						
2	Fraction >4mm (EN12457-2)	%	•	0,9	0,1		Selon norme lixiviation
Ď	Masse brute Mh pour lixiviation *)	g	•	110	1		Selon norme lixiviation
3	Lixiviation (EN 12457-2)	-	•				NF EN 12457-2
ט ט	Volume de lixiviant L ajouté pour l'extraction *)	ml		900	1		Selon norme lixiviation
:	Prétraitement des échantillons						
Ž.	Masse échantillon total inférieure à 2 kg	kg	•	0,72	0		
Š	Prétraitement de l'échantillon		•				Conforme à NEN-EN 16179
-	Matière sèche	%	•	80,7	0,01	+/- 1	NEN-EN 15934 ; EN12880

Matière sèche	%	° 80,7	0,01	+/- 1	NEN-EN 15934 ; EN12880
Calcul des Fractions solubles	8				
Fraction soluble cumulé (var. L/S)	*) mg/kg Ms	0 - 1000	1000		Selon norme lixiviation
Antimoine cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Arsenic cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Baryum cumulé (var. L/S)	*) mg/kg Ms	0 - 0,1	0,1		Selon norme lixiviation
Cadmium cumulé (var. L/S)	*) mg/kg Ms	0 - 0,001	0,001		Selon norme lixiviation
Chlorures cumulé (var. L/S)	*) mg/kg Ms	14	1		Selon norme lixiviation
Chromo cumuló (var. L/S)	*) ma/ka Me	0 - 0.02	0.02		Solon norma liviviation

to	i relevement par.	Cilci	IL .			
non	Spécification des échantillons	S18	(2-3)			
paramètres r		Unité	. , Résultat	Limite Quant.	Incert. Résultat %	Méthode
ran	Lixiviation					
ba	Fraction >4mm (EN12457-2)	%	° 0,9	0,1		Selon norme lixiviation
Seuls les	Masse brute Mh pour lixiviation) g	° 110	1		Selon norme lixiviation
sln	Lixiviation (EN 12457-2)		0			NF EN 12457-2
Se	Volume de lixiviant L ajouté pour l'extraction *) ml	900	1		Selon norme lixiviation
17.	Prétraitement des échantillons	3				
17025:2017	Masse échantillon total inférieure à 2 kg	kg	° 0,72	0		
025	Prétraitement de l'échantillon		0			Conforme à NEN-EN 16179
		%	° 80,7	0,01	+/- 1	NEN-EN 15934 ; EN12880
EC	Calcul des Fractions solubles					
EN ISO/I	Fraction soluble cumulé (var. L/S)	mg/kg Ms	0 - 1000	1000		Selon norme lixiviation
2	Antimoine cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
		mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
norme	Baryum cumulé (var. L/S)	mg/kg Ms	0 - 0,1	0,1		Selon norme lixiviation
ou	Cadmium cumulé (var. L/S)	mg/kg Ms	0 - 0,001	0,001		Selon norme lixiviation
<u>a</u>	Chlorures cumulé (var. L/S)	mg/kg Ms	14	1		Selon norme lixiviation
selon la	Chrome cumulé (var. L/S)	mg/kg Ms	0 - 0,02	0,02		Selon norme lixiviation
		mg/kg Ms	11	10		Selon norme lixiviation
lités	Cuivre cumulé (var. L/S)	mg/kg Ms	0 - 0,02	0,02		Selon norme lixiviation
réd	Fluorures cumulé (var. L/S)	mg/kg Ms	2,0	1		Selon norme lixiviation
sont accrédités	Indice phénol cumulé (var. L/S)	mg/kg Ms	0 - 0,1	0,1		Selon norme lixiviation
Ħ	Mercure cumulé (var. L/S)	mg/kg Ms	0 - 0,0003	0,0003		Selon norme lixiviation
		mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
B	Nickel cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
est	Plomb cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
AL-West	Sélénium cumulé (var. L/S)	mg/kg Ms	0,06	0,05		Selon norme lixiviation
		mg/kg Ms	50	50		Selon norme lixiviation
par	Zinc cumulé (var. L/S)	mg/kg Ms	0 - 0,02	0,02		Selon norme lixiviation
	A a la a Blance! a a la !! a a					

és	Analyses Physico-chimiques						
	pH-H2O		٥	9,0	0,1	+/- 10	Cf. NEN-ISO 10390 (sol uniquement)
S	COT Carbone Organique Total	mg/kg Ms		4200	1000	+/- 16	conforme ISO 10694 (2008)
iètre	Prétraitement pour analyses de	s métaux					
aran	Minéralisation à l'eau régale		0				NF-EN 16174; NF EN 13657 (déchets)
es p						•	page 1 de 4

> page 1 de 4 **RvA** L 005

AL-West B.V.
Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Métaux					
Arsenic (As)	mg/kg Ms	4,1	1	+/- 15	Conforme à EN-ISO 11885, EN 16174
Cadmium (Cd)	mg/kg Ms	<0,1	0,1		Conforme à EN-ISO 11885, EN 16174
Chrome (Cr)	mg/kg Ms	2,8	0,2	+/- 12	Conforme à EN-ISO 11885, EN 16174
Cuivre (Cu)	mg/kg Ms	4,2	0,2	+/- 20	Conforme à EN-ISO 11885, EN 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conforme à ISO 16772 et EN 16174
Nickel (Ni)	mg/kg Ms	3,0	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Plomb (Pb)	mg/kg Ms	1,8	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Zinc (Zn)	mg/kg Ms	4,6	1	+/- 22	Conforme à EN-ISO 11885, EN 16174

,		*		16174
Hydrocarbures Aromatique	es Polycycliques (I	SO)		
Naphtalène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Acénaphtylène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Acénaphtène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Fluorène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Phénanthrène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Anthracène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Fluoranthène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Pyrène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Benzo(a)anthracène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Chrysène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Benzo(b)fluoranthène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Benzo(k)fluoranthène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Benzo(a)pyrène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
HAP (6 Borneff) - somme	mg/kg Ms	n.d.		équivalent à NF EN 16181
Somme HAP (VROM)	mg/kg Ms	n.d.		équivalent à NF EN 16181
HAP (EPA) - somme	mg/kg Ms	n.d.		équivalent à NF EN 16181
Composés aromatiques	·	·		

^	,		4.
Com	noses	aroma	atiques

					Date N° Client	20.06.20 350049
RAPPORT D'ANALYSES					N Chefft	330049
n° Cde	1165024	4 A2205-313_E	EPFLi_C	combleux_sc	ol	
N° échant.		Solide / Eluat				
Spécification des échantillons	S18 (2-3					
Opecinication des contantinons	010 (2-0	, ,	Limite	Incert.		
	Unité	Résultat	Quant.	Résultat %	Méthode	
Métaux						
Arsenic (As)	mg/kg Ms	4,1	1	+/- 15	Conforme	à EN-ISO 11885, E
Cadmium (Cd)	mg/kg Ms	<0,1	0,1		Conforme	16174 à EN-ISO 11885, E
, ,		·		./ 12	Conforme	16174 à EN-ISO 11885, E
Chrome (Cr)	mg/kg Ms	2,8	0,2	+/- 12		16174
Cuivre (Cu)	mg/kg Ms	4,2	0,2	+/- 20	Conforme	à EN-ISO 11885, E 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conforme	e à ISO 16772 et EN
Nickel (Ni)	mg/kg Ms	3,0	0,5	+/- 11	Conforme	16174 à EN-ISO 11885, E
, ,		·				16174 à EN-ISO 11885, E
Plomb (Pb)	mg/kg Ms	1,8	0,5	+/- 11		16174
Zinc (Zn)	mg/kg Ms	4,6	1	+/- 22	Conforme	à EN-ISO 11885, E 16174
Hydrocarbures Aromatiques	Polycycliques (I	SO)				10171
Naphtalène	mg/kg Ms	<0,050	0,05		éguivale	ent à NF EN 1618
Acénaphtylène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Acénaphtène	mg/kg Ms	<0,050	0,05		équivale	ent à NF EN 1618
Fluorène	mg/kg Ms	<0,050	0,05		équivale	ent à NF EN 1618
Phénanthrène	mg/kg Ms	<0,050	0,05		équivale	ent à NF EN 1618
Anthracène	mg/kg Ms	<0,050	0,05		équivale	ent à NF EN 1618
Fluoranthène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Pyrène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Benzo(a)anthracène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Chrysène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Benzo(b)fluoranthène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Benzo(k)fluoranthène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Benzo(a)pyrène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
HAP (6 Borneff) - somme	mg/kg Ms	n.d.				ent à NF EN 1618
Somme HAP (VROM)	mg/kg Ms	n.d.				ent à NF EN 1618
HAP (EPA) - somme	mg/kg Ms	n.d.			equivale	ent à NF EN 1618
Composés aromatiques						
Benzène	mg/kg Ms	<0,050	0,05			SO 22155
Toluène	mg/kg Ms	<0,050	0,05			SO 22155
Ethylbenzène	mg/kg Ms	<0,050	0,05			SO 22155
m,p-Xylène	mg/kg Ms	<0,10	0,1			SO 22155
o-Xylène	mg/kg Ms	<0,050	0,05			SO 22155
Naphtalène Sommo Yulònos	mg/kg Ms mg/kg Ms	<0,10	0,1	+		SO 22155 SO 22155
Somme Xylènes	mg/kg Ms	n.d.				
BTEX total	/ IIIg/kg IVIS	n.d.			<u> </u>	SO 22155
COHV					1	
Chlorure de Vinyle	mg/kg Ms	<0,02	0,02			SO 22155
<u>Dichlorométhane</u>	mg/kg Ms	<0,05	0,05			SO 22155
Trichlorométhane	mg/kg Ms	<0,05	0,05			SO 22155
Tétrachlorométhane	mg/kg Ms	<0,05	0,05		I	SO 22155

COHV

ĸ	33.11				
_	Chlorure de Vinyle	mg/kg Ms	<0,02	0,02	ISO 22155
ב ב	Dichlorométhane	mg/kg Ms	<0,05	0,05	ISO 22155
=	Trichlorométhane	mg/kg Ms	<0,05	0,05	ISO 22155
<u>8</u>	Tétrachlorométhane	mg/kg Ms	<0,05	0,05	ISO 22155

RvA L 005

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

			Limite	Incert.	
	Unité	Résultat	Quant.	Résultat %	Méthode
Trichloroéthylène	mg/kg Ms	<0,05	0,05		ISO 22155
Tétrachloroéthylène	mg/kg Ms	<0,05	0,05		ISO 22155
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
1,1,2-Trichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
1,1-Dichloroéthane	mg/kg Ms	<0,10	0,1		ISO 22155
1,2-Dichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	0,025		ISO 22155
1,1-Dichloroéthylène	mg/kg Ms	<0,10	0,1		ISO 22155
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	0,025		ISO 22155
Somme cis/trans-1,2-Dichloroéthylènes	mg/kg Ms	n.d.			ISO 22155

Tryurocarbures totaux (130)				
Fraction aliphatique C5-C6	mg/kg Ms	<0,20	0,2	conforme à NEN-EN-ISO 16558-1
Fraction C5-C10	mg/kg Ms	<1,0 ×)	1	conforme à NEN-EN-ISO 16558-1
Fraction >C6-C8	mg/kg Ms	<0,40 x)	0,4	conforme à NEN-EN-ISO 16558-1
Fraction C8-C10	mg/kg Ms	<0,40 x)	0,4	conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	0,2	conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	0,2	conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	0,2	conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	0,2	conforme à NEN-EN-ISO 16558-1
Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	20	ISO 16703
Fraction C10-C12	*) mg/kg Ms	<4,0	4	ISO 16703
Fraction C12-C16	*) mg/kg Ms	<4,0	4	ISO 16703
Fraction C16-C20	*) mg/kg Ms	<2,0	2	ISO 16703
Fraction C20-C24	*) mg/kg Ms	<2,0	2	ISO 16703
Fraction C24-C28	*) mg/kg Ms	<2,0	2	ISO 16703
Fraction C28-C32	*) mg/kg Ms	<2,0	2	ISO 16703
Fraction C32-C36	*) mg/kg Ms	<2,0	2	ISO 16703
Fraction C36-C40	*) mg/kg Ms	<2.0	2	ISO 16703

Polychlorobiphényles

Somme 6 PCB	mg/kg Ms	n.d.		NEN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.		NEN-EN 16167
PCB (28)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB (52)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB (101)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB (118)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB (138)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB (153)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB (180)	mg/kg Ms	<0,001	0,001	NEN-EN 16167

Analyses sur éluat après lixiviation

					Date	20.06.202
DADDODT DIANAL VOCO					N° Client	3500495
RAPPORT D'ANALYSES	440500	4 40005 040 5	-DEL: 0		-1	
n° Cde		4 A2205-313_E	PFLI_C	ombieux_s	OI	
N° échant.		Solide / Eluat				
Spécification des échantillons	S18 (2-	3)				
	11.37	District	Limite	Incert.	NA COLORADO	
	Unité	Résultat	Quant.	Résultat %	Méthode	
Trichloroéthylène	mg/kg Ms	<0,05	0,05			ISO 22155
Tétrachloroéthylène	mg/kg Ms	<0,05	0,05			ISO 22155
1,1,1-Trichloroéthane 1,1,2-Trichloroéthane	mg/kg Ms mg/kg Ms	<0,05	0,05			ISO 22155 ISO 22155
1,1-Dichloroéthane	mg/kg Ms	<0,05 <0,10	0,05 0,1			ISO 22155
1,2-Dichloroéthane	mg/kg Ms	<0,10	0,05			ISO 22155
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	0,025			ISO 22155
1,1-Dichloroéthylène	mg/kg Ms	<0,10	0,1			ISO 22155
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	0,025			ISO 22155
Somme cis/trans-1,2-Dichloroéthylènes	mg/kg Ms	n.d.				ISO 22155
Hydrocarbures totaux (ISO)						
Fraction aliphatique C5-C6	mg/kg Ms	<0,20	0,2		conforme	à NEN-EN-ISO 16558-
Fraction C5-C10	mg/kg Ms	<1,0 x)	1		conforme	à NEN-EN-ISO 16558-
Fraction >C6-C8	mg/kg Ms	<0,40 x)	0,4		conforme	à NEN-EN-ISO 16558-
Fraction C8-C10	mg/kg Ms	<0,40 ×)	0,4			à NEN-EN-ISO 16558-
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	0,2			à NEN-EN-ISO 16558-
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	0,2			à NEN-EN-ISO 16558-
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	0,2			à NEN-EN-ISO 16558-
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	0,2		conforme	à NEN-EN-ISO 16558-
Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	20			ISO 16703
Fraction C10-C12	mg/kg wo	<4,0	4			ISO 16703
Fraction C12-C16 Fraction C16-C20	*) mg/kg Ms *) mg/kg Ms	<4,0 <2,0	2			ISO 16703 ISO 16703
Fraction C20-C24	*) mg/kg Ms	<2,0 <2,0	2			ISO 16703
Fraction C24-C28	*) mg/kg Ms	<2,0	2			ISO 16703
Fraction C28-C32	*) mg/kg Ms	<2,0	2			ISO 16703
Fraction C32-C36	*) mg/kg Ms	<2,0	2			ISO 16703
Fraction C36-C40	*) mg/kg Ms	<2,0	2			ISO 16703
Polychlorobiphényles	, , ,	,-				
Somme 6 PCB	mg/kg Ms	n.d.			N	EN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.				EN-EN 16167
PCB (28)	mg/kg Ms	<0,001	0,001			EN-EN 16167
PCB (52)	mg/kg Ms	<0,001	0,001			EN-EN 16167
PCB (101)	mg/kg Ms	<0,001	0,001			EN-EN 16167
PCB (118)	mg/kg Ms	<0,001	0,001			EN-EN 16167
PCB (138)	mg/kg Ms	<0,001	0,001			EN-EN 16167
PCB (153)	mg/kg Ms	<0,001	0,001			EN-EN 16167
PCB (180)	mg/kg Ms	<0,001	0,001		N	EN-EN 16167
Analyses sur éluat après lixiv	/iation					
L/S cumulé	ml/g	10,0	0,1		Selo	n norme lixiviation
Conductivité électrique	μS/cm	78,0	5	+/- 10		n norme lixiviation
рН		9,0	0	+/- 5		n norme lixiviation
Température	°C	20,3	0		Selo	n norme lixiviation
Analyses Physico-chimiques	sur éluat					
Résidu à sec	mg/l	<100	100			ent à NF EN ISO 15216
Fluorures (F)	mg/l	0,2	0,1	+/- 10	Conforme	à ISO 10359-1, conform
						à EN 16192

Analyses Physico-chimiques sur éluat

a)						
	Résidu à sec	mg/l	<100	100		Equivalent à NF EN ISO 15216
ram	Fluorures (F)	mg/l	0,2	0,1	+/- 10	Conforme à ISO 10359-1, conforme à EN 16192
pa	Indice phénol	ma/l	<0.010	0.01		NEN-EN 16192

page 3 de 4 **RvA** L 005

Directeur ppa. Marc van Gelder Dr. Paul Wimmer

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 20.06.2022 N° Client 35004955

RAPPORT D'ANALYSES

ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du symbole " *) ".

accrédités selon la norme

paramètres réalisés par AL-West BV sont

n° Cde 1165024 A2205-313_EPFLi_Combleux_sol

N° échant. 365383 Solide / Eluat

Spécification des échantillons S18 (2-3)

	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Chlorures (CI)	mg/l	1,4	0,1	+/- 10	Conforme à ISO 15923-1
Sulfates (SO4)	mg/l	5,0	5	+/- 10	Conforme à ISO 15923-1
COT	mg/l	1,1	1	+/- 10	conforme EN 16192
Métaux sur éluat					
Antimoine (Sb)	μg/I	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Arsenic (As)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Baryum (Ba)	μg/I	<10	10		Conforme à EN-ISO 17294-2 (2004)
Cadmium (Cd)	μg/l	<0,1	0,1		Conforme à EN-ISO 17294-2 (2004)
Chrome (Cr)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)
Cuivre (Cu)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)
Mercure	μg/l °	<0,03	0,03		méthode interne (conforme NEN- EN-ISO 12846)
Molybdène (Mo)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Nickel (Ni)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Plomb (Pb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Sélénium (Se)	μg/l	5,6	5	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Zinc (Zn)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé.

Le calcul de l' incertitude de mesure analytique combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l' expression de l' incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordtest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d' élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance).

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Début des analyses: 10.06.2022 Fin des analyses: 17.06.2022

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

Sty

AL-West B.V. Mme Fatima-Zahra Saati, Tel. 33/380680132 Chargée relation clientèle

accrédités et/ou externalisés sont marqués du symbole " *) ".

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

ENVISOL 2-4, rue Hector Berlioz 38110 LA TOUR DU PIN **FRANCE**

> Date 20.06.2022 N° Client 35004955

RAPPORT D'ANALYSES

n° Cde 1165024 A2205-313_EPFLi_Combleux_sol

N° échant. 365384 Solide / Eluat

Date de validation 10.06.2022 Prélèvement 07.06.2022 Prélèvement par: Client Spécification des échantillons S20 (1.3-2)

	Unité		Résultat	Limite Quant.	Incert. Résultat %	Méthode
Lixiviation						
Fraction >4mm (EN12457-2)	%	0	4,3	0,1		Selon norme lixiviation
Masse brute Mh pour lixiviation *)	g	0	100	1		Selon norme lixiviation
Lixiviation (EN 12457-2)		•				NF EN 12457-2
Volume de lixiviant L ajouté pour l'extraction *)	ml		900	1		Selon norme lixiviation
Prétraitement des échantillons						
Masse échantillon total inférieure à 2 kg	kg	•	0,60	0		
Prétraitement de l'échantillon		0				Conforme à NEN-EN 16179
		_				

_	1	-,-,-	,		
Prétraitement de l'échantillon		۰			Conforme à NEN-EN 16179
Matière sèche	%	° 87,3	0,01	+/- 1	NEN-EN 15934 ; EN12880
Coloui dos Frantiano solubles					

Calcul des Fractions solubles Fraction soluble cumulé (var. L/S) *) mg/kg Ms 3200 1000 Selon norme lixiviation

ī	Arsenic cumulé (var. L/S)	mg/kg Ms	0,44	0,05		Selon norme lixiviation
=	Baryum cumulé (var. L/S)	mg/kg Ms	0,28	0,1		Selon norme lixiviation
2	Cadmium cumulé (var. L/S)	mg/kg Ms	0 - 0,001	0,001	S	Selon norme lixiviation
<u>a</u>	Chlorures cumulé (var. L/S)	mg/kg Ms	720	1	S	Selon norme lixiviation
5	Chrome cumulé (var. L/S)	mg/kg Ms	0 - 0,02	0,02	S	Selon norme lixiviation
מ	COT cumulé (var. L/S)	mg/kg Ms	88	10		Selon norme lixiviation
ב ב	Cuivre cumulé (var. L/S)	mg/kg Ms	0,17	0,02		Selon norme lixiviation
ם ט	Fluorures cumulé (var. L/S) *)	mg/kg Ms	5,0	1		Selon norme lixiviation
3	Indice phénol cumulé (var. L/S) *)	mg/kg Ms	0 - 0,1	0,1		Selon norme lixiviation
=	Mercure cumulé (var. L/S)	mg/kg Ms	0 - 0,0003	0,0003		Selon norme lixiviation
5	Molybdène cumulé (var. L/S)	mg/kg Ms	0,14	0,05	S	Selon norme lixiviation
2	Nickel cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	S	Selon norme lixiviation
ĭ	Plomb cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
> >	Sélénium cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
ׅ֡֡֡֡֡֡֡֡֝ ֡	Sulfates cumulé (var. L/S) *)	mg/kg Ms	210	50		Selon norme lixiviation
=	Zinc cumulé (var L/S) *)	ma/ka Ms	0 - 0.02	0.02	9	Selon norme lixiviation

Spécification des échantillons	S S2	0 (1.3-2)			
	Unité	Résult	Limite at Quant.	Incert. Résultat %	Méthode
Lixiviation	la.	1	_1		
Fraction >4mm (EN12457-2)	%	° 4			Selon norme lixiviation
Masse brute Mh pour lixiviation	*) g	° 10	0 1		Selon norme lixiviation
Lixiviation (EN 12457-2)		0			NF EN 12457-2
Volume de lixiviant L ajouté pour l'extracti	on *) ml	90	0 1		Selon norme lixiviation
Prétraitement des échantill	ons				
Masse échantillon total inférieure à 2 kg	kg	° 0,6	0		
Prétraitement de l'échantillon		0			Conforme à NEN-EN 16179
Matière sèche	%	° 87	3 0,01	+/- 1	NEN-EN 15934 ; EN12880
Calcul des Fractions solub	les				
Fraction soluble cumulé (var. L/S)	*) mg/kg Ms	320	0 1000		Selon norme lixiviation
Antimoine cumulé (var. L/S)	*) mg/kg Ms	0 - 0,0			Selon norme lixiviation
Arsenic cumulé (var. L/S)	*) mg/kg Ms	0,4			Selon norme lixiviation
Baryum cumulé (var. L/S)	*) mg/kg Ms	0,2			Selon norme lixiviation
Cadmium cumulé (var. L/S)	*) mg/kg Ms	0 - 0,00			Selon norme lixiviation
Chlorures cumulé (var. L/S)	*) mg/kg Ms	72			Selon norme lixiviation
Chrome cumulé (var. L/S)	*) mg/kg Ms	0 - 0,0			Selon norme lixiviation
COT cumulé (var. L/S)	*) mg/kg Ms	8	8 10		Selon norme lixiviation
Cuivre cumulé (var. L/S)	*) mg/kg Ms	0,1	7 0,02		Selon norme lixiviation
Fluorures cumulé (var. L/S)	*) mg/kg Ms	5	0 1		Selon norme lixiviation
Indice phénol cumulé (var. L/S)	*) mg/kg Ms	0 - 0	1 0,1		Selon norme lixiviation
Mercure cumulé (var. L/S)	*) mg/kg Ms	0 - 0,000	3 0,0003		Selon norme lixiviation
Molybdène cumulé (var. L/S)	*) mg/kg Ms	0,1	4 0,05		Selon norme lixiviation
Nickel cumulé (var. L/S)	*) mg/kg Ms	0 - 0,0	5 0,05		Selon norme lixiviation
Plomb cumulé (var. L/S)	*) mg/kg Ms	0 - 0,0	5 0,05		Selon norme lixiviation
Sélénium cumulé (var. L/S)	*) mg/kg Ms	0 - 0,0	5 0,05		Selon norme lixiviation
Sulfates cumulé (var. L/S)	*) mg/kg Ms	21	0 50		Selon norme lixiviation
Zinc cumulé (var. L/S)	*) mg/kg Ms	0 - 0,0	0,02		Selon norme lixiviation
Analyses Physico-chimique	es				
pH-H2O		° 9	4 0,1	+/- 10	Cf. NEN-ISO 10390 (sol uniquement)
COT Carbone Organique Total	mg/kg Ms	940	1000	+/- 16	conforme ISO 10694 (2008)
Prétraitement pour analyse	s des métaux	•			
Minéralisation à l'eau régale		•			NF-EN 16174; NF EN 13657 (déchets)

)							
5	Prétraitement	pour	analyses	des	m	étaux	

> page 1 de 4 **RvA** L 005

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

N echani.	303304	Solide / Eluat			
Spécification des échantillons	S20 (1.3	3-2)			
	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Métaux					
Arsenic (As)	mg/kg Ms	13	1	+/- 15	Conforme à EN-ISO 11885, EN 16174
Cadmium (Cd)	mg/kg Ms	<0,1	0,1		Conforme à EN-ISO 11885, EN 16174
Chrome (Cr)	mg/kg Ms	32	0,2	+/- 12	Conforme à EN-ISO 11885, EN 16174
Cuivre (Cu)	mg/kg Ms	11	0,2	+/- 20	Conforme à EN-ISO 11885, EN 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conforme à ISO 16772 et EN 16174
Nickel (Ni)	mg/kg Ms	19	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Plomb (Pb)	mg/kg Ms	18	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Zinc (Zn)	mg/kg Ms	45	1	+/- 22	Conforme à EN-ISO 11885, EN 16174
Hydrocarbures Aromatiques	Polycycliques (I	SO)			
Naphtalène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Acénaphtylène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Acénaphtène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Fluorène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Phénanthrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Anthracène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Fluoranthène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Pyrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Benzo(a)anthracène	ma/ka Ms	<0.050	0.05		éguivalent à NF FN 16181

					Date N° Client	20.06.202 3500495
RAPPORT D'ANALYSES						
n° Cde	116502	24 A2205-313_l	EPFLi_C	Combleux_s	ol	
N° échant.	365384	Solide / Eluat				
Spécification des échantillons	S20 (1.	.3-2)				
	•	•	Limite	Incert.		
	Unité	Résultat	Quant.	Résultat %	Méthode	
Métaux						
Arsenic (As)	mg/kg Ms	13	1	+/- 15	Conforme	à EN-ISO 11885, EN 16174
Cadmium (Cd)	mg/kg Ms	<0,1	0,1		Conforme	à EN-ISO 11885, EN
Chrome (Cr)	mg/kg Ms	32	0,2	+/- 12	Conforme	16174 à EN-ISO 11885, EN
Cuivre (Cu)	mg/kg Ms	11	0,2	+/- 20	Conforme	16174 à EN-ISO 11885, EN
				+/- 20		16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conforme	e à ISO 16772 et EN 16174
Nickel (Ni)	mg/kg Ms	19	0,5	+/- 11	Conforme	à EN-ISO 11885, EN
Plomb (Pb)	mg/kg Ms	18	0,5	+/- 11	Conforme	16174 à EN-ISO 11885, EN
Zinc (Zn)	mg/kg Ms	45	1	+/- 22	Conforme	16174 à EN-ISO 11885, EN
				.,		16174
Hydrocarbures Aromatiques I						. ` NE EN 40404
Naphtalène	mg/kg Ms	<0,050	0,05			ent à NF EN 16181
Acénaphtylène	mg/kg Ms	<0,050	0,05			ent à NF EN 16181
Acénaphtène	mg/kg Ms	<0,050	0,05		<u> </u>	ent à NF EN 16181
Fluorène	mg/kg Ms	<0,050	0,05			ent à NF EN 16181
Phénanthrène	mg/kg Ms	<0,050	0,05			ent à NF EN 16181
Anthracène	mg/kg Ms	<0,050	0,05			ent à NF EN 16181
Fluoranthène	mg/kg Ms	<0,050	0,05		•	ent à NF EN 16181
Pyrène	mg/kg Ms	<0,050	0,05			ent à NF EN 16181
Benzo(a)anthracène	mg/kg Ms	<0,050	0,05			ent à NF EN 16181
Chrysène	mg/kg Ms	<0,050	0,05			ent à NF EN 16181
Benzo(b)fluoranthène	mg/kg Ms	<0,050	0,05			ent à NF EN 16181
Benzo(k)fluoranthène	mg/kg Ms	<0,050	0,05			ent à NF EN 16181
Benzo(a)pyrène	mg/kg Ms	<0,050	0,05			ent à NF EN 16181
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,05			ent à NF EN 16181
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	0,05		équivale	ent à NF EN 16181
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	0,05			ent à NF EN 16181
HAP (6 Borneff) - somme	mg/kg Ms	n.d.				ent à NF EN 16181
Somme HAP (VROM)	mg/kg Ms	n.d.				ent à NF EN 16181
HAP (EPA) - somme	mg/kg Ms	n.d.			équivale	ent à NF EN 16181
Composés aromatiques						
Benzène	mg/kg Ms	<0,050	0,05		ı	SO 22155
Toluène	mg/kg Ms	<0,050	0,05			SO 22155
Ethylbenzène	mg/kg Ms	<0,050	0,05			SO 22155
m,p-Xylène	mg/kg Ms	<0,10	0,1			SO 22155
o-Xylène	mg/kg Ms	<0,050	0,05			SO 22155
Naphtalène	mg/kg Ms	<0,030	0,03			SO 22155
Somme Xylènes	mg/kg Ms	~0,10 n.d.	υ, ι			SO 22155 SO 22155
	*) mg/kg Ms	n.d.				SO 22155
	ing/kg Ms	ii.u.				00 22 100
COHV	1 , , , ,				1	
Chlorure de Vinyle	mg/kg Ms	<0,02	0,02			SO 22155
Dichlorométhane	mg/kg Ms	<0,05	0,05			SO 22155
Trichlorométhane	mg/kg Ms	<0,05	0,05			SO 22155
Tétrachlorométhane	mg/kg Ms	<0,05	0,05		I	SO 22155

^	,		4.
Com	noses	aroma	atiques

ક	Composés aromatiques				
Ĕ	Benzène	mg/kg Ms	<0,050	0,05	ISO 22155
ń	Toluène	mg/kg Ms	<0,050	0,05	ISO 22155
<u> </u>	Ethylbenzène	mg/kg Ms	<0,050	0,05	ISO 22155
ß	m,p-Xylène	mg/kg Ms	<0,10	0,1	ISO 22155
?	o-Xylène	mg/kg Ms	<0,050	0,05	ISO 22155
ζ	Naphtalène	mg/kg Ms	<0,10	0,1	ISO 22155
ğ	Somme Xylènes	mg/kg Ms	n.d.		ISO 22155
ה ט	BTEX total	mg/kg Ms	n.d.		ISO 22155

COHV

τ.					
-	Chlorure de Vinyle	mg/kg Ms	<0,02	0,02	ISO 22155
5	Dichlorométhane	mg/kg Ms	<0,05	0,05	ISO 22155
2	Trichlorométhane	mg/kg Ms	<0,05	0,05	ISO 22155
3	Tétrachlorométhane	mg/kg Ms	<0,05	0,05	ISO 22155

RvA L 005

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

	Unité	Résultat	Quant.	Résultat %	Méthode
Trichloroéthylène	mg/kg Ms	<0,05	0,05		ISO 22155
Tétrachloroéthylène	mg/kg Ms	<0,05	0,05		ISO 22155
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
1,1,2-Trichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
1,1-Dichloroéthane	mg/kg Ms	<0,10	0,1		ISO 22155
1,2-Dichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	0,025		ISO 22155
1,1-Dichloroéthylène	mg/kg Ms	<0,10	0,1		ISO 22155
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	0,025		ISO 22155
Somme cis/trans-1,2-Dichloroéthylènes	mg/kg Ms	n.d.			ISO 22155

Hydrocarbures to	otaux (ISO)
------------------	-------------

nyurocarbures totaux (130)					
Fraction aliphatique C5-C6	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Fraction C5-C10	mg/kg Ms	<1,0 x)	1		conforme à NEN-EN-ISO 16558-1
Fraction >C6-C8	mg/kg Ms	<0,40 x)	0,4		conforme à NEN-EN-ISO 16558-1
Fraction C8-C10	mg/kg Ms	<0,40 x)	0,4		conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	20		ISO 16703
Fraction C10-C12	mg/kg Ms	<4,0	4		ISO 16703
Fraction C12-C16	mg/kg Ms	<4,0	4		ISO 16703
Fraction C16-C20	mg/kg Ms	2,6	2	+/- 21	ISO 16703
Fraction C20-C24	mg/kg Ms	2,9	2	+/- 21	ISO 16703
Fraction C24-C28	mg/kg Ms	3,4	2	+/- 21	ISO 16703
Fraction C28-C32	mg/kg Ms	4,1	2	+/- 21	ISO 16703
Fraction C32-C36	mg/kg Ms	<2,0	2		ISO 16703
Fraction C36-C40	mg/kg Ms	<2,0	2		ISO 16703

Polychlorobiphényles

Somme 6 PCB	mg/kg Ms	0,010 x)			NEN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	0,012 ^{x)}			NEN-EN 16167
PCB (28)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
PCB (52)	mg/kg Ms	0,001	0,001	+/- 33	NEN-EN 16167
PCB (101)	mg/kg Ms	0,003	0,001	+/- 34	NEN-EN 16167
PCB (118)	mg/kg Ms	0,002	0,001	+/- 19	NEN-EN 16167
PCB (138)	mg/kg Ms	0,003	0,001	+/- 30	NEN-EN 16167
PCB (153)	mg/kg Ms	0,002	0,001	+/- 22	NEN-EN 16167
PCB (180)	mg/kg Ms	0,001	0,001	+/- 12	NEN-EN 16167

Analyses sur éluat après lixiviation

symbole " ')						Date	20.06.2022
ogw,	DADDODT DIAMAL VOCO					N° Client	3500495
	RAPPORT D'ANALYSES						
Ś	n° Cde		5024 A2205-313_E	:PFLi_C	ombleux_s	Ol	
dne	N° échant.	3653	384 Solide / Eluat				
nar	Spécification des échantillons	S20	(1.3-2)				
ב				Limite	Incert.		
seuls les parametres non accredites et/ou externalises sont		Unité	Résultat	Quant.	Résultat %	Méthod	e
Ses	Trichloroéthylène	mg/kg Ms	<0,05	0,05			ISO 22155
'n	Tétrachloroéthylène	mg/kg Ms	<0,05	0,05			ISO 22155
xte	1,1,1-Trichloroéthane	mg/kg Ms	<0,05	0,05			ISO 22155
D D	1,1,2-Trichloroéthane	mg/kg Ms	<0,05	0,05			ISO 22155
)t/0	1,1-Dichloroéthane	mg/kg Ms	<0,10	0,1			ISO 22155
န္	1,2-Dichloroéthane	mg/kg Ms	<0,05	0,05			ISO 22155
ğ	cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	0,025			ISO 22155
Scre	1,1-Dichloroéthylène	mg/kg Ms	<0,10	0,1			ISO 22155
ă	Trans-1,2-Dichloroéthylène Somme cis/trans-1,2-Dichloroéthylènes	mg/kg Ms	<0,025	0,025	+		ISO 22155
nor L		mg/kg Ms	n.d.				ISO 22155
es	Hydrocarbures totaux (ISO)						
Jet	Fraction aliphatique C5-C6	mg/kg Ms	<0,20	0,2			e à NEN-EN-ISO 16558-1
īg	Fraction C5-C10	mg/kg Ms	<1,0 x)	1			e à NEN-EN-ISO 16558-1
pa Da	Fraction >C6-C8	mg/kg Ms	<0,40 x)	0,4			e à NEN-EN-ISO 16558-1
<u>e</u> s	Fraction C8-C10	mg/kg Ms	<0,40 ^{x)}	0,4			e à NEN-EN-ISO 16558-1
SIN	Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	0,2			e à NEN-EN-ISO 16558-1 e à NEN-EN-ISO 16558-1
Š	Fraction aromatique >C6-C8	mg/kg Ms	<0,20	0,2			e à NEN-EN-ISO 16558-1 e à NEN-EN-ISO 16558-1
7	Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	0,2			e à NEN-EN-ISO 16558-1
7	Fraction aromatique >C8-C10	mg/kg Ms	<0,20	0,2		COMOTH	
	Hydrocarbures totaux C10-C40 Fraction C10-C12	mg/kg Ms mg/kg Ms	<20,0 <4,0	20 4			ISO 16703 ISO 16703
7	Fraction C12-C16	*) mg/kg Ms	<4,0 <4,0	4			ISO 16703
	Fraction C16-C20	*) mg/kg Ms	2,6	2	+/- 21		ISO 16703
SO/IEC	Fraction C20-C24	*) mg/kg Ms	2,9	2	+/- 21		ISO 16703
<u>x</u>	Fraction C24-C28	*) mg/kg Ms	3,4	2	+/- 21		ISO 16703
Z II	Fraction C28-C32	*) mg/kg Ms	4,1	2	+/- 21		ISO 16703
це	Fraction C32-C36	*) mg/kg Ms	<2,0	2	1, 21		ISO 16703
	Fraction C36-C40	*) mg/kg Ms	<2,0	2			ISO 16703
<u> </u>	Polychlorobiphényles	1 0 0	· -, -,-			 	
	Somme 6 PCB	mg/kg Ms	0,010 ×)				IEN-EN 16167
sont accredites selo	Somme 7 PCB (Ballschmiter)	mg/kg Ms	0,012 ×)				NEN-EN 16167
tes	PCB (28)	mg/kg Ms	<0,001	0,001			NEN-EN 16167
ed ed	PCB (52)	mg/kg Ms	0,001	0,001	+/- 33		NEN-EN 16167
ည္က	PCB (101)	mg/kg Ms	0,003	0,001	+/- 34		IEN-EN 16167
ĭ	PCB (118)	mg/kg Ms	0,002	0,001	+/- 19		IEN-EN 16167
	PCB (138)	mg/kg Ms	0,003	0,001	+/- 30		IEN-EN 16167
ิล	PCB (153)	mg/kg Ms	0,002	0,001	+/- 22		IEN-EN 16167
est	PCB (180)	mg/kg Ms	0,001	0,001	+/- 12	١	IEN-EN 16167
>	Analyses sur éluat après lixiv	riation					
¥.	L/S cumulé	ml/g	10,0	0,1		Sel	on norme lixiviation
par	Conductivité électrique	μS/cm	320	5	+/- 10		on norme lixiviation
es	рН	1	9,8	0	+/- 5		on norme lixiviation
Les parametres realises par AL-West BV	Température	°C	19,9	0			on norme lixiviation
ē	Analyses Physico-chimiques			-			
ii E	Résidu à sec	mg/l	320	100	+/- 22	Equiva	lent à NF EN ISO 15216
me	Fluorures (F)	mg/l	0,5	0,1	+/- 10		e à ISO 10359-1, conform
m	. 14314100 (1 <i>)</i>	'''9''	0,0	٥, ١	., 10		à EN 16192
ä	Indice phénol	mg/l	<0,010	0,01			IEN-EN 16192

Analyses Physico-chimiques sur éluat

a many coordinate comments and comments.							
5	Résidu à sec	mg/l	320	100	+/- 22	Equivalent à NF EN ISO 15216	
<u></u>	Fluorures (F)	mg/l	0,5	0,1	+/- 10	Conforme à ISO 10359-1, conforme à EN 16192	
2	Indice phénol	ma/l	<0.010	0,01		NEN-EN 16192	

RvA L 005

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 20.06.2022 N° Client 35004955

RAPPORT D'ANALYSES

ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du symbole " *) ".

accrédités selon la norme

paramètres réalisés par AL-West BV sont

n° Cde 1165024 A2205-313_EPFLi_Combleux_sol

N° échant. 365384 Solide / Eluat

Spécification des échantillons S20 (1.3-2)

	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Chlorures (CI)	mg/l	72	0,1	+/- 10	Conforme à ISO 15923-1
Sulfates (SO4)	mg/l	21	5	+/- 10	Conforme à ISO 15923-1
СОТ	mg/l	8,8	1	+/- 10	conforme EN 16192
Métaux sur éluat					
Antimoine (Sb)	μg/I	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Arsenic (As)	μg/I	44	5	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Baryum (Ba)	μg/I	28	10	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Cadmium (Cd)	μg/I	<0,1	0,1		Conforme à EN-ISO 17294-2 (2004)
Chrome (Cr)	μg/I	<2,0	2		Conforme à EN-ISO 17294-2 (2004)
Cuivre (Cu)	μg/I	17	2	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Mercure	μg/l	° <0,03	0,03		méthode interne (conforme NEN- EN-ISO 12846)
Molybdène (Mo)	μg/I	14	5	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Nickel (Ni)	μg/I	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Plomb (Pb)	μg/I	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Sélénium (Se)	μg/I	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Zinc (Zn)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé.

Le calcul de l' incertitude de mesure analytique combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l' expression de l' incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordtest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d' élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance).

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Début des analyses: 10.06.2022 Fin des analyses: 17.06.2022

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

(Styl-

AL-West B.V. Mme Fatima-Zahra Saati, Tel. 33/380680132 Chargée relation clientèle

accrédités et/ou externalisés sont marqués du symbole " *) ".

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

ENVISOL 2-4, rue Hector Berlioz 38110 LA TOUR DU PIN **FRANCE**

> Date 20.06.2022 N° Client 35004955

RAPPORT D'ANALYSES

n° Cde 1165024 A2205-313_EPFLi_Combleux_sol

N° échant. 365385 Solide / Eluat

Date de validation 10.06.2022 Prélèvement 07.06.2022 Prélèvement par: Client Spécification des échantillons S13 (3-4)

	Unité		Résultat	Limite Quant.	Incert. Résultat %	Méthode
Lixiviation						
Fraction >4mm (EN12457-2)	%	0	2,0	0,1		Selon norme lixiviation
Masse brute Mh pour lixiviation	*) g	•	100	1		Selon norme lixiviation
Lixiviation (EN 12457-2)		0				NF EN 12457-2
Volume de lixiviant L ajouté pour l'extraction	*) ml		900	1		Selon norme lixiviation
Prétraitement des échantillor	าร					
Masse échantillon total inférieure à 2 kg	kg	0	0,67	0		
Prétraitement de l'échantillon	-	0				Conforme à NEN-EN 16179
Matière sèche	%	0	87,2	0,01	+/- 1	NEN-EN 15934 ; EN1288
Calcul des Fractions soluble	s					
Fraction soluble cumulé (var. L/S)	*) mg/kg Ms		0 - 1000	1000		Selon norme lixiviation
Antimoine cumulé (var. L/S)	*) mg/kg Ms		0 - 0,05	0,05		Selon norme lixiviation
Arsenic cumulé (var. L/S)	*) mg/kg Ms		0 - 0,05	0,05		Selon norme lixiviation
Baryum cumulé (var. L/S)	*) mg/kg Ms		0,15	0,1		Selon norme lixiviation
Cadmium cumulé (var. L/S)	*) mg/kg Ms		0 - 0,001	0,001		Selon norme lixiviation
Chlorures cumulé (var. L/S)	*) mg/kg Ms		7,0	1		Selon norme lixiviation
Chrome cumulé (var. L/S)	*) mg/kg Ms		0 - 0,02	0,02		Selon norme lixiviation
COT cumulé (var. L/S)	*) mg/kg Ms		15	10		Selon norme lixiviation
Cuivre cumulé (var. L/S)	*) mg/kg Ms		0,02	0,02		Selon norme lixiviation
Fluorures cumulé (var. L/S)	*) mg/kg Ms		8,0	1		Selon norme lixiviation
Indice phénol cumulé (var. L/S)	*) mg/kg Ms		0 - 0,1	0,1		Selon norme lixiviation
Mercure cumulé (var. L/S)	*) mg/kg Ms		0 - 0,0003	0,0003		Selon norme lixiviation
Molybdène cumulé (var. L/S)	*) mg/kg Ms		0,08	0,05		Selon norme lixiviation
Nickel cumulé (var. L/S)	*) mg/kg Ms		0 - 0,05	0,05		Selon norme lixiviation
Plomb cumulé (var. L/S)	*) mg/kg Ms		0 - 0,05	0,05		Selon norme lixiviation
Sélénium cumulé (var. L/S)	*) mg/kg Ms		0 - 0,05	0,05		Selon norme lixiviation
Sulfates cumulé (var. L/S)	*) mg/kg Ms		120	50		Selon norme lixiviation
Zinc cumulé (var. L/S)	*) mg/kg Ms		0 - 0,02	0,02		Selon norme lixiviation
Analyses Physico-chimiques	•					
pH-H2O		•	8,9	0,1	+/- 10	Cf. NEN-ISO 10390 (sol uniquement)
COT Carbone Organique Total	mg/kg Ms		2400	1000	+/- 16	conforme ISO 10694 (2008
Prétraitement pour analyses	des métaux					
Minéralisation à l'eau régale		0				NF-EN 16174; NF EN 13657 (déchets)

ea	pH-H2O		8,9	0,1	+/- 10	uniquement)
Σ	COT Carbone Organique Total	mg/kg Ms	2400	1000	+/- 16	conforme ISO 10694 (2008)
Ψ.						

AL-West B.V.
Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 20.06.2022 N° Client 35004955

RAPPORT D'ANALYSES

n° Cde 1165024 A2205-313_EPFLi_Combleux_sol

N° échant. 365385 Solide / Eluat

Spécification des échantillons	S13 (3-4)				
	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Métaux					
Arsenic (As)	mg/kg Ms	13	1	+/- 15	Conforme à EN-ISO 11885, EN 16174
Cadmium (Cd)	mg/kg Ms	0,2	0,1	+/- 21	Conforme à EN-ISO 11885, EN 16174
Chrome (Cr)	mg/kg Ms	21	0,2	+/- 12	Conforme à EN-ISO 11885, EN 16174
Cuivre (Cu)	mg/kg Ms	8,5	0,2	+/- 20	Conforme à EN-ISO 11885, EN 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conforme à ISO 16772 et EN 16174
Nickel (Ni)	mg/kg Ms	13	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Plomb (Pb)	mg/kg Ms	18	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Zinc (Zn)	mg/kg Ms	53	1	+/- 22	Conforme à EN-ISO 11885, EN 16174
Hydrocarbures Aromatiques	Polycycliques (ISO))			
Naphtalène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Acénaphtylène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Acénaphtène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Fluorène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Phénanthrène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Anthracène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Fluoranthène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181

Hydrocarbures Aromatique	s Polycycliques (I	SO)		
Naphtalène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Acénaphtylène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Acénaphtène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Fluorène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Phénanthrène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Anthracène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Fluoranthène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Pyrène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Benzo(a)anthracène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Chrysène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Benzo(b)fluoranthène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Benzo(k)fluoranthène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Benzo(a)pyrène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
HAP (6 Borneff) - somme	mg/kg Ms	n.d.		équivalent à NF EN 16181
Somme HAP (VROM)	mg/kg Ms	n.d.		équivalent à NF EN 16181
HAP (EPA) - somme	mg/kg Ms	n.d.		équivalent à NF EN 16181
Composés aromatiques				

_	,		
Com	nnses	aron	natiques

ď	Composes aromanques				
Ĕ	Benzène	mg/kg Ms	<0,050	0,05	ISO 22155
ń	Toluène	mg/kg Ms	<0,050	0,05	ISO 22155
2	Ethylbenzène	mg/kg Ms	<0,050	0,05	ISO 22155
Š	m,p-Xylène	mg/kg Ms	<0,10	0,1	ISO 22155
>	o-Xylène	mg/kg Ms	<0,050	0,05	ISO 22155
ζ	Naphtalène	mg/kg Ms	<0,10	0,1	ISO 22155
ğ	Somme Xylènes	mg/kg Ms	n.d.		ISO 22155
20	BTEX total	mg/kg Ms	n.d.		ISO 22155
מ					

COHV

Les paramètres réalisés par AL-West BV sont accrédités selon la norme EN ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du symbole " *) ".

₹	00111				
-	Chlorure de Vinyle	mg/kg Ms	<0,02	0,02	ISO 22155
5	Dichlorométhane	mg/kg Ms	<0,05	0,05	ISO 22155
2	Trichlorométhane	mg/kg Ms	<0,05	0,05	ISO 22155
5	Tétrachlorométhane	mg/kg Ms	<0,05	0,05	ISO 22155

RvA L 005

Kamer van Koophandel Nr. 08110898 ppa. Marc VAT/BTW-ID-Nr.: NL 811132559 B01 Directeur ppa. Marc Dr. Paul V ppa. Marc van Gelder Dr. Paul Wimmer

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

			Limite	Incert.	
	Unité	Résultat	Quant.	Résultat %	Méthode
Trichloroéthylène	mg/kg Ms	<0,05	0,05		ISO 22155
Tétrachloroéthylène	mg/kg Ms	<0,05	0,05		ISO 22155
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
1,1,2-Trichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
1,1-Dichloroéthane	mg/kg Ms	<0,10	0,1		ISO 22155
1,2-Dichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	0,025		ISO 22155
1,1-Dichloroéthylène	mg/kg Ms	<0,10	0,1		ISO 22155
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	0,025		ISO 22155
Somme cis/trans-1,2-Dichloroéthylènes	mg/kg Ms	n.d.			ISO 22155

Hydrocarbures to	otaux (ISO)
------------------	-------------

nydrocarbures totaux (150)						
Fraction aliphatique C5-C6	mg/kg Ms	<0,20	0,2		conforme à NEN-E	N-ISO 16558-1
Fraction C5-C10	mg/kg Ms	<1,0 ×)	1		conforme à NEN-E	N-ISO 16558-1
Fraction >C6-C8	mg/kg Ms	<0,40 ×)	0,4		conforme à NEN-E	N-ISO 16558-1
Fraction C8-C10	mg/kg Ms	<0,40 ×)	0,4		conforme à NEN-E	N-ISO 16558-1
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	0,2		conforme à NEN-E	N-ISO 16558-1
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	0,2		conforme à NEN-E	N-ISO 16558-1
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	0,2		conforme à NEN-E	N-ISO 16558-1
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	0,2		conforme à NEN-E	N-ISO 16558-1
Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	20		ISO 16	703
Fraction C10-C12	mg/kg Ms	<4,0	4		ISO 16	703
Fraction C12-C16	mg/kg Ms	<4,0	4		ISO 16	703
Fraction C16-C20	mg/kg Ms	<2,0	2		ISO 16	703
Fraction C20-C24	mg/kg Ms	<2,0	2		ISO 16	703
Fraction C24-C28	mg/kg Ms	2,8	2	+/- 21	ISO 16	703
Fraction C28-C32	mg/kg Ms	3,8	2	+/- 21	ISO 16	703
Fraction C32-C36	mg/kg Ms	3,4	2	+/- 21	ISO 16	703
Fraction C36-C40	mg/kg Ms	2,4	2	+/- 21	ISO 16	703

Polychlorobiphényles

Somme 6 PCB	mg/kg Ms	0,0050 x)			NEN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	0,0050 x)			NEN-EN 16167
PCB (28)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
PCB (52)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
PCB (101)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
PCB (118)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
PCB (138)	mg/kg Ms	0,002	0,001	+/- 30	NEN-EN 16167
PCB (153)	mg/kg Ms	0,002	0,001	+/- 22	NEN-EN 16167
PCB (180)	mg/kg Ms	0,001	0,001	+/- 12	NEN-EN 16167

Analyses sur éluat après lixiviation

RAPPORT D'ANALYSES					Date	20.06.2022
					N° Client	3500495
					_	
n° Cde N° échant. Spécification des échantillons		024 A2205-313_E	EPFLi_C	ombleux_s	ol	
ဦး N° échant.	3653	85 Solide / Eluat				
Spécification des échantillons	S13	(3-4)				
- 100			Limite	Incert.		
Trichloroéthylène Tétrachloroéthylène 1,1,1-Trichloroéthane 1,1-Dichloroéthane 1,2-Dichloroéthane 1,2-Dichloroéthène 1,1-Dichloroéthène 1,1-Dichloroéthylène Trans-1,2-Dichloroéthylène Somme cis/trans-1,2-Dichloroéthylènes Hydrocarbures totaux (ISO) Fraction aliphatique C5-C6 Fraction C5-C10 Fraction aliphatique >C6-C8 Fraction aliphatique >C6-C8 Fraction aromatique >C6-C8	Unité	Résultat	Quant.	Résultat %	Méthode	•
Trichloroéthylène	mg/kg Ms	<0,05	0,05			ISO 22155
Tétrachloroéthylène	mg/kg Ms	<0,05	0,05			ISO 22155
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	0,05			ISO 22155
1,1,2-Trichloroéthane	mg/kg Ms	<0,05	0,05			ISO 22155
1,1-Dichloroéthane	mg/kg Ms	<0,10	0,1			ISO 22155
1,2-Dichloroéthane	mg/kg Ms mg/kg Ms	<0,05 <0,025	0,05 0,025			ISO 22155 ISO 22155
1,1-Dichloroéthylène	mg/kg Ms	<0,023	0,023			ISO 22155
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	0,025			ISO 22155
Somme cis/trans-1,2-Dichloroéthylènes	mg/kg Ms	n.d.	0,020			ISO 22155
Hydrocarbures totaux (ISO)	1 0 0					
Fraction aliphatique C5-C6	mg/kg Ms	<0,20	0,2		conform	e à NEN-EN-ISO 16558-1
Fraction C5-C10	mg/kg Ms	<1,0 x)	1			e à NEN-EN-ISO 16558-1
Fraction >C6-C8	mg/kg Ms	<0,40 ^{x)}	0,4		conform	e à NEN-EN-ISO 16558-1
Fraction C8-C10	mg/kg Ms	<0,40 ×)	0,4		conform	e à NEN-EN-ISO 16558-1
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	0,2		conform	e à NEN-EN-ISO 16558-1
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	0,2			e à NEN-EN-ISO 16558-1
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	0,2			e à NEN-EN-ISO 16558-1
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	0,2		conform	e à NEN-EN-ISO 16558-1
Fraction aliphatique >C8-C10 Fraction aromatique >C8-C10 Hydrocarbures totaux C10-C40 Fraction C10-C12 Fraction C12-C16	mg/kg Ms	<20,0	20			ISO 16703
Fraction C10-C12	*) mg/kg Ms	<4,0	4			ISO 16703
	*) mg/kg Ms	<4,0	4			ISO 16703
Fraction C24 C29	*) mg/kg Ms	<2,0	2			ISO 16703
Fraction C20-C24 Fraction C24-C28	*) mg/kg Ms *) mg/kg Ms	<2,0	2	+/- 21		ISO 16703
Fraction C24-C26	*) mg/kg Ms	2,8 3,8	2	+/- 21		ISO 16703
Fraction C23-C36	*) mg/kg Ms	3,4	2	+/- 21		ISO 16703
Fraction C32-C36 Fraction C36-C40	*) mg/kg Ms	2,4	2	+/- 21		ISO 16703
Polychlorobiphényles		2 -j-⊤		.,		100 10100
- I oracinoropibilenales	mg/kg Ms	0,0050 x)				IEN-EN 16167
Somme 6 PCB Somme 7 PCB (Ballschmiter) PCB (28) PCB (52) PCB (101) PCB (118) PCB (138)	mg/kg Ms	0,0050 ×)				IEN-EN 16167
PCB (28)	mg/kg Ms	<0,001	0,001			IEN-EN 16167
PCB (52)	mg/kg Ms	<0,001	0,001			IEN-EN 16167
PCB (101)	mg/kg Ms	<0,001	0,001			IEN-EN 16167
PCB (118)	mg/kg Ms	<0,001	0,001		N	IEN-EN 16167
	mg/kg Ms	0,002	0,001	+/- 30	N	IEN-EN 16167
PCB (153)	mg/kg Ms	0,002	0,001	+/- 22		IEN-EN 16167
Ø PCB (180)	mg/kg Ms	0,001	0,001	+/- 12	N	IEN-EN 16167
🖣 Analyses sur éluat après lixiv	riation					
L/S cumulé	ml/g	10,0	0,1		Seld	on norme lixiviation
Conductivité électrique	μS/cm	110	5	+/- 10		on norme lixiviation
pΗ		8,9	0	+/- 5		on norme lixiviation
Température	°C	20,9	0		Seld	on norme lixiviation
Analyses Physico-chimiques	sur éluat					
Résidu à sec	mg/l	<100	100			lent à NF EN ISO 15216
Fluorures (F)	mg/l	0,8	0,1	+/- 10	Conforme	è à ISO 10359-1, conform
	• !	· · · · · · · · · · · · · · · · · · ·				
PCB (153) PCB (180) Analyses sur éluat après lixiv L/S cumulé Conductivité électrique pH Température Analyses Physico-chimiques Résidu à sec Fluorures (F) Indice phénol	mg/l	<0,010	0,01		N	à EN 16192 IEN-EN 16192

Analyses Physico-chimiques sur éluat

١١.						
5	Résidu à sec	mg/l	<100	100		Equivalent à NF EN ISO 15216
<u> </u>	Fluorures (F)	mg/l	0,8	0,1	+/- 10	Conforme à ISO 10359-1, conforme à EN 16192
2	Indice phénol	ma/l	<0.010	0.01		NEN-EN 16192

page 3 de 4 **RvA** L 005

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 20.06.2022 N° Client 35004955

RAPPORT D'ANALYSES

ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du symbole " *) ".

accrédités selon la norme

paramètres réalisés par AL-West BV sont

n° Cde 1165024 A2205-313_EPFLi_Combleux_sol

N° échant. 365385 Solide / Eluat

Spécification des échantillons S13 (3-4)

	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
) 	Office	Resultat	Quant.	Resultat 70	ivietriode
Chlorures (CI)	mg/l	0,7	0,1	+/- 10	Conforme à ISO 15923-1
Sulfates (SO4)	mg/l	12	5	+/- 10	Conforme à ISO 15923-1
COT	mg/l	1,5	1	+/- 10	conforme EN 16192
Métaux sur éluat					
Antimoine (Sb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Arsenic (As)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Baryum (Ba)	μg/l	15	10	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Cadmium (Cd)	μg/l	<0,1	0,1		Conforme à EN-ISO 17294-2 (2004)
Chrome (Cr)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)
Cuivre (Cu)	μg/l	2,2	2	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Mercure	µg/l	° <0,03	0,03		méthode interne (conforme NEN- EN-ISO 12846)
Molybdène (Mo)	μg/l	8,2	5	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Nickel (Ni)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Plomb (Pb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Sélénium (Se)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Zinc (Zn)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé.

Le calcul de l' incertitude de mesure analytique combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l' expression de l' incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordtest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d' élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance).

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Début des analyses: 10.06.2022 Fin des analyses: 17.06.2022

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

(Styl-

AL-West B.V. Mme Fatima-Zahra Saati, Tel. 33/380680132 Chargée relation clientèle

accrédités et/ou externalisés sont marqués du symbole " *) ".

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

ENVISOL 2-4, rue Hector Berlioz 38110 LA TOUR DU PIN **FRANCE**

> Date 20.06.2022 N° Client 35004955

RAPPORT D'ANALYSES

n° Cde 1165024 A2205-313_EPFLi_Combleux_sol

N° échant. 365386 Solide / Eluat

Date de validation 10.06.2022 Prélèvement 07.06.2022 Prélèvement par: Client Spécification des échantillons S15 (1-2)

Specification des echantillons	31	o (1-2)			
	Unité	Rés	Limite sultat Quant.	Incert. Résultat %	Méthode
Lixiviation					
Fraction >4mm (EN12457-2)	%	0	1,3 0,1		Selon norme lixiviation
Masse brute Mh pour lixiviation	*) g	0	110 1		Selon norme lixiviation
Lixiviation (EN 12457-2)		0			NF EN 12457-2
Volume de lixiviant L ajouté pour l'extraction	*) ml		900 1		Selon norme lixiviation
Prétraitement des échantillor	าร				
Masse échantillon total inférieure à 2 kg	kg	•	0,52 0		
Prétraitement de l'échantillon		0			Conforme à NEN-EN 16179
Matière sèche	%	0	80,4 0,01	+/- 1	NEN-EN 15934 ; EN12880
Calcul des Fractions soluble	S				
Fraction soluble cumulé (var. L/S)	*) mg/kg Ms	,	1000 1000		Selon norme lixiviation
Antimoine cumulé (var. L/S)	*) mg/kg Ms		0,05 0,05		Selon norme lixiviation
Arsenic cumulé (var. L/S)	*) mg/kg Ms	0 -	0,05 0,05		Selon norme lixiviation
Baryum cumulé (var. L/S)	*) mg/kg Ms		0,21 0,1		Selon norme lixiviation
Cadmium cumulé (var. L/S)	*) mg/kg Ms	0 - 0	,001 0,001		Selon norme lixiviation
Chlorures cumulé (var. L/S)	*) mg/kg Ms		9,0 1		Selon norme lixiviation
Chrome cumulé (var. L/S)	*) mg/kg Ms	0 -	0,02 0,02		Selon norme lixiviation
COT cumulé (var. L/S)	*) mg/kg Ms	0	- 10 10		Selon norme lixiviation
Cuivre cumulé (var. L/S)	*) mg/kg Ms	0 -	0,02 0,02		Selon norme lixiviation
Fluorures cumulé (var. L/S)	*) mg/kg Ms		9,0 1		Selon norme lixiviation
Indice phénol cumulé (var. L/S)	*) mg/kg Ms	0	- 0,1 0,1		Selon norme lixiviation
Mercure cumulé (var. L/S)	*) mg/kg Ms	0 - 0,0	0,0003		Selon norme lixiviation
Molybdène cumulé (var. L/S)	*) mg/kg Ms		0,06 0,05		Selon norme lixiviation
Nickel cumulé (var. L/S)	*) mg/kg Ms	0 -	0,05 0,05		Selon norme lixiviation
Plomb cumulé (var. L/S)	*) mg/kg Ms	0 -	0,05 0,05		Selon norme lixiviation
Sélénium cumulé (var. L/S)	*) mg/kg Ms	0 -	0,05 0,05		Selon norme lixiviation
Sulfates cumulé (var. L/S)	*) mg/kg Ms		120 50		Selon norme lixiviation
Zinc cumulé (var. L/S)	*) mg/kg Ms	0 -	0,02 0,02		Selon norme lixiviation
Analyses Physico-chimiques	;				
2 -1 1100		0	0.4	./ 10	Of NEN-ISO 10390 (col

	Unité		Résultat	Limite Quant.	Incert. Résultat %	Méthode
Lixiviation						
Fraction >4mm (EN12457-2)	%	۰	1,3	0,1		Selon norme lixiviation
Masse brute Mh pour lixiviation	*) g	۰	110	1		Selon norme lixiviation
Lixiviation (EN 12457-2)		۰				NF EN 12457-2
Volume de lixiviant L ajouté pour l'extraction	ml *)		900	1		Selon norme lixiviation
Prétraitement des échantillo	ns					
Masse échantillon total inférieure à 2 kg	kg	•	0,52	0		
Prétraitement de l'échantillon		۰				Conforme à NEN-EN 161
Matière sèche	%	0	80,4	0,01	+/- 1	NEN-EN 15934 ; EN128
Calcul des Fractions soluble	s					
Fraction soluble cumulé (var. L/S)	*) mg/kg Ms		1000	1000		Selon norme lixiviation
Antimoine cumulé (var. L/S)	*) mg/kg Ms		0 - 0,05	0,05		Selon norme lixiviation
Arsenic cumulé (var. L/S)	*) mg/kg Ms		0 - 0,05	0,05		Selon norme lixiviation
Baryum cumulé (var. L/S)	*) mg/kg Ms		0,21	0,1		Selon norme lixiviation
Cadmium cumulé (var. L/S)	*) mg/kg Ms		0 - 0,001	0,001		Selon norme lixiviation
Chlorures cumulé (var. L/S)	*) mg/kg Ms		9,0	1		Selon norme lixiviation
Chrome cumulé (var. L/S)	*) mg/kg Ms		0 - 0,02	0,02		Selon norme lixiviation
COT cumulé (var. L/S)	*) mg/kg Ms		0 - 10	10		Selon norme lixiviation
Cuivre cumulé (var. L/S)	*) mg/kg Ms		0 - 0,02	0,02		Selon norme lixiviation
Fluorures cumulé (var. L/S)	*) mg/kg Ms		9,0	1		Selon norme lixiviation
Indice phénol cumulé (var. L/S)	*) mg/kg Ms		0 - 0,1	0,1		Selon norme lixiviation
Mercure cumulé (var. L/S)	*) mg/kg Ms		0 - 0,0003	0,0003		Selon norme lixiviation
Molybdène cumulé (var. L/S)	*) mg/kg Ms		0,06	0,05		Selon norme lixiviation
Nickel cumulé (var. L/S)	*) mg/kg Ms		0 - 0,05	0,05		Selon norme lixiviation
Plomb cumulé (var. L/S)	*) mg/kg Ms		0 - 0,05	0,05		Selon norme lixiviation
Sélénium cumulé (var. L/S)	*) mg/kg Ms		0 - 0,05	0,05		Selon norme lixiviation
Sulfates cumulé (var. L/S)	*) mg/kg Ms		120	50		Selon norme lixiviation
Zinc cumulé (var. L/S)	*) mg/kg Ms		0 - 0,02	0,02		Selon norme lixiviation
Analyses Physico-chimiques	3					
pH-H2O		•	8,4	0,1	+/- 10	Cf. NEN-ISO 10390 (sol uniquement)
COT Carbone Organique Total	mg/kg Ms		4600	1000	+/- 16	conforme ISO 10694 (200
Prétraitement pour analyses	des métaux					
Minéralisation à l'eau régale		0				NF-EN 16174; NF EN 1365 (déchets)

> page 1 de 4 **RvA** L 005

AL-West B.V.
Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 20.06.2022 N° Client 35004955

RAPPORT D'ANALYSES

n° Cde 1165024 A2205-313_EPFLi_Combleux_sol

N° échant. 365386 Solide / Eluat

Spécification des échantillons S15 (1-2)

	(/				
	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Métaux					
Arsenic (As)	mg/kg Ms	36	1	+/- 15	Conforme à EN-ISO 11885, EN 16174
Cadmium (Cd)	mg/kg Ms	<0,1	0,1		Conforme à EN-ISO 11885, EN 16174
Chrome (Cr)	mg/kg Ms	52	0,2	+/- 12	Conforme à EN-ISO 11885, EN 16174
Cuivre (Cu)	mg/kg Ms	17	0,2	+/- 20	Conforme à EN-ISO 11885, EN 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conforme à ISO 16772 et EN 16174
Nickel (Ni)	mg/kg Ms	31	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Plomb (Pb)	mg/kg Ms	29	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Zinc (Zn)	mg/kg Ms	81	1	+/- 22	Conforme à EN-ISO 11885, EN 16174
Hydrocarbures Aromatiques	Polycycliques (ISO))			
Naphtalène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Acénaphtylène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Acénaphtène	mg/kg Ms	<0,050	0,05		équivalent à NF EN 16181
Fluorène	ma/ka Ms	< 0.050	0.05		éguivalent à NF EN 16181

` ,				16174
Hydrocarbures Aromatique	es Polycycliques (I	SO)		
Naphtalène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Acénaphtylène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Acénaphtène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Fluorène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Phénanthrène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Anthracène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Fluoranthène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Pyrène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Benzo(a)anthracène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Chrysène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Benzo(b)fluoranthène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Benzo(k)fluoranthène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Benzo(a)pyrène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
HAP (6 Borneff) - somme	mg/kg Ms	n.d.		équivalent à NF EN 16181
Somme HAP (VROM)	mg/kg Ms	n.d.		équivalent à NF EN 16181
HAP (EPA) - somme	mg/kg Ms	n.d.		équivalent à NF EN 16181
Composés aromatiques				

						,			_
29	an	atı	m	r۸	а	sés	nn	m	: n
	uu	au		ıu	a	262	DO	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	⊸u

3	Composes aromanques				
Ĕ	Benzène	mg/kg Ms	<0,050	0,05	ISO 22155
ń	Toluène	mg/kg Ms	<0,050	0,05	ISO 22155
2	Ethylbenzène	mg/kg Ms	<0,050	0,05	ISO 22155
Š	m,p-Xylène	mg/kg Ms	<0,10	0,1	ISO 22155
>	o-Xylène	mg/kg Ms	<0,050	0,05	ISO 22155
ζ	Naphtalène	mg/kg Ms	<0,10	0,1	ISO 22155
ğ	Somme Xylènes	mg/kg Ms	n.d.		ISO 22155
S	BTEX total	mg/kg Ms	n.d.		ISO 22155
n					

COHV

Les paramètres réalisés par AL-West BV sont accrédités selon la norme EN ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du symbole " *) ".

τ.					
-	Chlorure de Vinyle	mg/kg Ms	<0,02	0,02	ISO 22155
5	Dichlorométhane	mg/kg Ms	<0,05	0,05	ISO 22155
2	Trichlorométhane	mg/kg Ms	<0,05	0,05	ISO 22155
5	Tétrachlorométhane	mg/kg Ms	<0,05	0,05	ISO 22155

RvA L 005

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

RAPPORT D'ANALYSES

	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Trichloroéthylène	mg/kg Ms	<0,05	0,05		ISO 22155
Tétrachloroéthylène	mg/kg Ms	<0,05	0,05		ISO 22155
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
1,1,2-Trichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
1,1-Dichloroéthane	mg/kg Ms	<0,10	0,1		ISO 22155
1,2-Dichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	0,025		ISO 22155
1,1-Dichloroéthylène	mg/kg Ms	<0,10	0,1		ISO 22155
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	0,025		ISO 22155
Somme cis/trans-1,2-Dichloroéthylènes	mg/kg Ms	n.d.			ISO 22155

Н١	/dro	carbure	s totaux	(ISO)

Tryurocarbures totaux (130)				
Fraction aliphatique C5-C6	mg/kg Ms	<0,20	0,2	conforme à NEN-EN-ISO 16558-1
Fraction C5-C10	mg/kg Ms	<1,0 ×)	1	conforme à NEN-EN-ISO 16558-1
Fraction >C6-C8	mg/kg Ms	<0,40 x)	0,4	conforme à NEN-EN-ISO 16558-1
Fraction C8-C10	mg/kg Ms	<0,40 x)	0,4	conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	0,2	conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	0,2	conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	0,2	conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	0,2	conforme à NEN-EN-ISO 16558-1
Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	20	ISO 16703
Fraction C10-C12	*) mg/kg Ms	<4,0	4	ISO 16703
Fraction C12-C16	*) mg/kg Ms	<4,0	4	ISO 16703
Fraction C16-C20	*) mg/kg Ms	<2,0	2	ISO 16703
Fraction C20-C24	*) mg/kg Ms	<2,0	2	ISO 16703
Fraction C24-C28	*) mg/kg Ms	<2,0	2	ISO 16703
Fraction C28-C32	*) mg/kg Ms	<2,0	2	ISO 16703
Fraction C32-C36	*) mg/kg Ms	<2,0	2	ISO 16703
Fraction C36-C40	*) mg/kg Ms	<2.0	2	ISO 16703

Polychlorobiphényles

Somme 6 PCB	mg/kg Ms	n.d.		NEN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.		NEN-EN 16167
PCB (28)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB (52)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB (101)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB (118)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB (138)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB (153)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
PCB (180)	mg/kg Ms	<0,001	0,001	NEN-EN 16167

Analyses sur éluat après lixiviation

RAPPORT D'ANALYSES					Date	20.06.202
					N° Client	3500495
	440=0	• 4 4 0 0 0 = 0 4 0 = 0				
n° Cde N° échant. Spécification des échantillons		24 A2205-313_E	:PFLi_C	ombleux_s	ol	
ይ N° échant.	36538	6 Solide / Eluat				
Spécification des échantillons	S15 (1	-2)				
			Limite	Incert.		
Trichloroéthylène Tétrachloroéthylène 1,1,1-Trichloroéthane 1,1-Dichloroéthane 1,2-Dichloroéthane 1,2-Dichloroéthane 1,2-Dichloroéthène 1,1-Dichloroéthylène Trans-1,2-Dichloroéthylène Somme cis/trans-1,2-Dichloroéthylènes Hydrocarbures totaux (ISO) Fraction aliphatique C5-C6 Fraction C5-C10 Fraction C8-C10 Fraction aliphatique >C6-C8 Fraction aliphatique >C6-C8 Fraction aromatique >C6-C8	Unité	Résultat	Quant.	Résultat %	Méthode	9
Trichloroéthylène	mg/kg Ms	<0,05	0,05			ISO 22155
Tétrachloroéthylène	mg/kg Ms	<0,05	0,05			ISO 22155
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	0,05			ISO 22155
1,1,2-Trichloroéthane	mg/kg Ms	<0,05	0,05			ISO 22155
1,1-Dichloroéthane 1,2-Dichloroéthane	mg/kg Ms mg/kg Ms	<0,10 <0,05	0,1 0,05			ISO 22155 ISO 22155
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	0,05			ISO 22155
1,1-Dichloroéthylène	mg/kg Ms	<0,023	0,023			ISO 22155
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	0,025			ISO 22155
Somme cis/trans-1,2-Dichloroéthylènes	mg/kg Ms	n.d.	0,020			ISO 22155
Hydrocarbures totaux (ISO)					 	
Fraction aliphatique C5-C6	mg/kg Ms	<0,20	0,2		conform	e à NEN-EN-ISO 16558-1
Fraction C5-C10	mg/kg Ms	<1,0 ×)	1		conforme	e à NEN-EN-ISO 16558-1
Fraction >C6-C8	mg/kg Ms	<0,40 ^{x)}	0,4		conform	e à NEN-EN-ISO 16558-1
Fraction C8-C10	mg/kg Ms	<0,40 ×)	0,4		conform	e à NEN-EN-ISO 16558-1
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	0,2		conforme	e à NEN-EN-ISO 16558-1
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	0,2			e à NEN-EN-ISO 16558-1
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	0,2			e à NEN-EN-ISO 16558-1
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	0,2		conform	e à NEN-EN-ISO 16558-1
Fraction aliphatique >C8-C10 Fraction aromatique >C8-C10 Hydrocarbures totaux C10-C40 Fraction C10-C12 Fraction C12-C16	mg/kg Ms	<20,0	20			ISO 16703
Fraction C10-C12	*) mg/kg Ms	<4,0	4			ISO 16703
	*) mg/kg Ms	<4,0	4			ISO 16703
Fraction C16-C20 Fraction C20-C24 Fraction C20-C24	*) mg/kg Ms	<2,0	2			ISO 16703
Fraction C20-C24 Fraction C24-C28	*) mg/kg Ms *) mg/kg Ms	<2,0	2			ISO 16703 ISO 16703
Fraction C24-C28	*) mg/kg Ms	<2,0 <2,0	2			ISO 16703
Fraction C32-C36	*) mg/kg Ms	<2,0	2			ISO 16703
Fraction C32-C36 Fraction C36-C40	*) mg/kg Ms	<2,0	2			ISO 16703
Polychlorobiphényles	ggc	_ ;0			l	100 10100
- i diyenidi dbipnenyies	mg/kg Ms	n d				IEN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d. n.d.				IEN-EN 16167
Somme 6 PCB Somme 7 PCB (Ballschmiter) PCB (28) PCB (52) PCB (101) PCB (118) PCB (138)	mg/kg Ms	<0,001	0,001			IEN-EN 16167
PCB (52)	mg/kg Ms	<0,001	0,001			IEN-EN 16167
PCB (101)	mg/kg Ms	<0,001	0,001			IEN-EN 16167
PCB (118)	mg/kg Ms	<0,001	0,001			IEN-EN 16167
	mg/kg Ms	<0,001	0,001		N	IEN-EN 16167
PCB (153)	mg/kg Ms	<0,001	0,001			IEN-EN 16167
B PCB (180)	mg/kg Ms	<0,001	0,001		N	IEN-EN 16167
Analyses sur éluat après lixi	viation					
L/S cumulé	ml/g	10,0	0,1		Seld	on norme lixiviation
Conductivité électrique	μS/cm	150	5	+/- 10		on norme lixiviation
pΗ		8,0	0	+/- 5		on norme lixiviation
Température	°C	20,7	0		Seld	on norme lixiviation
Analyses Physico-chimiques	sur éluat					
Résidu à sec	mg/l	100	100	+/- 22		lent à NF EN ISO 15216
PCB (153) PCB (180) Analyses sur éluat après lixiv L/S cumulé Conductivité électrique pH Température Analyses Physico-chimiques Résidu à sec Fluorures (F) Indice phénol	mg/l	0,9	0,1	+/- 10	Conforme	à ISO 10359-1, conform à EN 16192
Indice phénol	mg/l	<0,010	0,01		N	IEN-EN 16192
n 		,	-,			page 3 de 4

Analyses Physico-chimiques sur éluat

ı٨						
5	Résidu à sec	mg/l	100	100	+/- 22	Equivalent à NF EN ISO 15216
<u></u>	Fluorures (F)	mg/l	0,9	0,1	+/- 10	Conforme à ISO 10359-1, conforme à EN 16192
2	Indice phénol	ma/l	<0.010	0,01		NEN-EN 16192

page 3 de 4 **RvA** L 005

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 20.06.2022 N° Client 35004955

RAPPORT D'ANALYSES

ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du symbole " *) ".

accrédités selon la norme

paramètres réalisés par AL-West BV sont

n° Cde 1165024 A2205-313_EPFLi_Combleux_sol

N° échant. 365386 Solide / Eluat

Spécification des échantillons S15 (1-2)

	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Chlorures (CI)	mg/l	0,9	0,1	+/- 10	Conforme à ISO 15923-1
Sulfates (SO4)	mg/l	12	5	+/- 10	Conforme à ISO 15923-1
COT	mg/l	<1,0	1		conforme EN 16192
Métaux sur éluat					
Antimoine (Sb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Arsenic (As)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Baryum (Ba)	μg/l	21	10	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Cadmium (Cd)	μg/l	<0,1	0,1		Conforme à EN-ISO 17294-2 (2004)
Chrome (Cr)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)
Cuivre (Cu)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)
Mercure	μg/l	° <0,03	0,03		méthode interne (conforme NEN- EN-ISO 12846)
Molybdène (Mo)	μg/l	5,7	5	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Nickel (Ni)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Plomb (Pb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Sélénium (Se)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Zinc (Zn)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé.

Le calcul de l' incertitude de mesure analytique combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l' expression de l' incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordtest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d' élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance).

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Début des analyses: 10.06.2022 Fin des analyses: 17.06.2022

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

(Styl

AL-West B.V. Mme Fatima-Zahra Saati, Tel. 33/380680132 Chargée relation clientèle

et/ou externalisés sont marqués du symbole " *) ".

Seuls les paramètres non

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

ENVISOL 2-4, rue Hector Berlioz 38110 LA TOUR DU PIN **FRANCE**

> 20.06.2022 Date N° Client 35004955

RAPPORT D'ANALYSES

n° Cde 1165024 A2205-313_EPFLi_Combleux_sol

N° échant. 365387 Solide / Eluat

Date de validation 10.06.2022 Prélèvement 07.06.2022 Prélèvement par: Client Spécification des échantillons S18 (0-1)

	Unité		Résultat	Quant.	Résultat %	Méthode
Lixiviation						
Fraction >4mm (EN12457-2)	%	•	33,1	0,1		Selon norme lixiviation
Masse brute Mh pour lixiviation	*) g	•	110	1		Selon norme lixiviation
Lixiviation (EN 12457-2)		۰				NF EN 12457-2
Volume de lixiviant L ajouté pour l'extraction	*) ml		900	1		Selon norme lixiviation

Limite

Incert.

Prétraitement des échantillons

Masse échantillon total inférieure à 2 kg	kg	۰	0,65	0		
Prétraitement de l'échantillon		۰				Conforme à NEN-EN 16179
Broyeur à mâchoires		۰				méthode interne
Matière sèche	%	۰	83,6	0,01	+/- 1	NEN-EN 15934 ; EN12880

Calcul des Fractions solubles

Fraction soluble cumulé (var. L/S)	mg/kg Ms	0 - 1000	1000	Selon norme lixiviation
Antimoine cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
Arsenic cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
Baryum cumulé (var. L/S)	mg/kg Ms	0 - 0,1	0,1	Selon norme lixiviation
Cadmium cumulé (var. L/S)	mg/kg Ms	0 - 0,001	0,001	Selon norme lixiviation
Chlorures cumulé (var. L/S)	mg/kg Ms	9,0	1	Selon norme lixiviation
Chrome cumulé (var. L/S)	mg/kg Ms	0 - 0,02	0,02	Selon norme lixiviation
COT cumulé (var. L/S)	mg/kg Ms	16	10	Selon norme lixiviation
Cuivre cumulé (var. L/S)	mg/kg Ms	0,03	0,02	Selon norme lixiviation
Fluorures cumulé (var. L/S)	mg/kg Ms	2,0	1	Selon norme lixiviation
Indice phénol cumulé (var. L/S)	mg/kg Ms	0 - 0,1	0,1	Selon norme lixiviation
Mercure cumulé (var. L/S)	mg/kg Ms	0 - 0,0003	0,0003	Selon norme lixiviation
Molybdène cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
Nickel cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
Plomb cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
Sélénium cumulé (var. L/S)	mg/kg Ms	0 - 0,05	0,05	Selon norme lixiviation
Sulfates cumulé (var. L/S)	mg/kg Ms	0 - 50	50	Selon norme lixiviation
Zinc cumulé (var. L/S)	mg/kg Ms	0,05	0,02	Selon norme lixiviation

	1111	300			CCIOTI HOTHIC IIXIVIALIOTI
Prétraitement des échantillo	ns				
Masse échantillon total inférieure à 2 kg	kg	° 0,65	0		
Prétraitement de l'échantillon		0			Conforme à NEN-EN 161
Broyeur à mâchoires		0			méthode interne
Matière sèche	%	° 83,6	0,01	+/- 1	NEN-EN 15934 ; EN128
Calcul des Fractions soluble	es				
Fraction soluble cumulé (var. L/S)	*) mg/kg Ms	0 - 1000	1000		Selon norme lixiviation
Antimoine cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Arsenic cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Baryum cumulé (var. L/S)	*) mg/kg Ms	0 - 0,1	0,1		Selon norme lixiviation
Cadmium cumulé (var. L/S)	*) mg/kg Ms	0 - 0,001	0,001		Selon norme lixiviation
Chlorures cumulé (var. L/S)	*) mg/kg Ms	9,0	1		Selon norme lixiviation
Chrome cumulé (var. L/S)	*) mg/kg Ms	0 - 0,02	0,02		Selon norme lixiviation
COT cumulé (var. L/S)	*) mg/kg Ms	16	10		Selon norme lixiviation
Cuivre cumulé (var. L/S)	*) mg/kg Ms	0,03	0,02		Selon norme lixiviation
Fluorures cumulé (var. L/S)	*) mg/kg Ms	2,0	1		Selon norme lixiviation
Indice phénol cumulé (var. L/S)	*) mg/kg Ms	0 - 0,1	0,1		Selon norme lixiviation
Mercure cumulé (var. L/S)	*) mg/kg Ms	0 - 0,0003	0,0003		Selon norme lixiviation
Molybdène cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Nickel cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Plomb cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Sélénium cumulé (var. L/S)	*) mg/kg Ms	0 - 0,05	0,05		Selon norme lixiviation
Sulfates cumulé (var. L/S)	*) mg/kg Ms	0 - 50	50		Selon norme lixiviation
Zinc cumulé (var. L/S)	*) mg/kg Ms	0,05	0,02		Selon norme lixiviation
Analyses Physico-chimique	S				
pH-H2O		° 8,7	0,1	+/- 10	Cf. NEN-ISO 10390 (sol uniquement)
COT Carbone Organique Total	mg/kg Ms	6100	1000	+/- 16	conforme ISO 10694 (20
Sulfates cumulé (var. L/S) Zinc cumulé (var. L/S) Analyses Physico-chimique pH-H2O COT Carbone Organique Total Prétraitement pour analyses	1 0 0		.500	., .3	
					page 1 c

AL-West B.V.
Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode
Minéralisation à l'eau régale	0				NF-EN 16174; NF EN 13657 (déchets)
Métaux					
Arsenic (As)	mg/kg Ms	2,5	1	+/- 15	Conforme à EN-ISO 11885, EN 16174
Cadmium (Cd)	mg/kg Ms	<0,2 ^{pe)}	0,2		Conforme à EN-ISO 11885, EN 16174
Chrome (Cr)	mg/kg Ms	3,6	0,2	+/- 12	Conforme à EN-ISO 11885, EN 16174
Cuivre (Cu)	mg/kg Ms	2,6	0,2	+/- 20	Conforme à EN-ISO 11885, EN 16174
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conforme à ISO 16772 et EN 16174
Nickel (Ni)	mg/kg Ms	2,7	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Plomb (Pb)	mg/kg Ms	2,0	0,5	+/- 11	Conforme à EN-ISO 11885, EN 16174
Zinc (Zn)	mg/kg Ms	5,3	1	+/- 22	Conforme à EN-ISO 11885, EN 16174

Hydrocarbures	Aromotiques	Polyovaliause	(160)
Hydrocarbures	Aromatiques	Polycycliques	(150)

		- 			
ě	Naphtalène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
	Acénaphtylène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
5	Acénaphtène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
2.7	Fluorène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Š	Phénanthrène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
-	Anthracène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
נ	Fluoranthène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
5	Pyrène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
2	Benzo(a)anthracène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Ĺ	Chrysène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
ī	Benzo(b)fluoranthène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
5	Benzo(k)fluoranthène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
<u>v</u>	Benzo(a)pyrène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
5	Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
Ď	Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
S E	Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	0,05	équivalent à NF EN 16181
5	HAP (6 Borneff) - somme	mg/kg Ms	n.d.		équivalent à NF EN 16181
3	Somme HAP (VROM)	mg/kg Ms	n.d.		équivalent à NF EN 16181
₫=	HAP (EPA) - somme	mg/kg Ms	n.d.		équivalent à NF EN 16181
=					

					Date Nº Client	20.06.20
RAPPORT D'ANALYSES					N° Client	35004
n° Cde	116502	4 A2205-313_E	EPFLi C	ombleux sc	ol	
N° échant.		Solide / Eluat				
Spécification des échantillons	S18 (0-	1)				
	Unité	Résultat	Limite Quant.	Incert. Résultat %	Méthode	
Minéralisation à l'eau régale	•	riodanai		110001101 70		16174; NF EN 1365
						(déchets)
Métaux		0.5		/ 45	Conforma	À EN 100 44005
Arsenic (As)	mg/kg Ms	2,5	1	+/- 15	Conforme	à EN-ISO 11885, 16174
Cadmium (Cd)	mg/kg Ms	<0,2 ^{pe)}	0,2		Conforme	à EN-ISO 11885, 16174
Chrome (Cr)	mg/kg Ms	3,6	0,2	+/- 12	Conforme	à EN-ISO 11885,
Cuivre (Cu)	mg/kg Ms	2,6	0,2	+/- 20	Conforme	16174 à EN-ISO 11885,
Mercure (Hg)	mg/kg Ms	<0,05	0,05		Conform	16174 e à ISO 16772 et E
	mg/kg Ms	·		+/- 11	Conforme	16174 à EN-ISO 11885, I
Nickel (Ni)		2,7	0,5			16174
Plomb (Pb)	mg/kg Ms	2,0	0,5	+/- 11		à EN-ISO 11885, 16174
Zinc (Zn)	mg/kg Ms	5,3	1	+/- 22	Conforme	à EN-ISO 11885, 16174
Hydrocarbures Aromatiques	Polycycliques (I	SO)				
Naphtalène	mg/kg Ms	<0,050	0,05		éguivale	ent à NF EN 1618
Acénaphtylène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Acénaphtène	mg/kg Ms	<0,050	0,05		équivale	ent à NF EN 1618
Fluorène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Phénanthrène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Anthracène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Fluoranthène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Pyrène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Benzo(a)anthracène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Chrysène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Benzo(b)fluoranthène		<0,050				
	mg/kg Ms		0,05			ent à NF EN 1618
Benzo(k)fluoranthène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Benzo(a)pyrène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	0,05			ent à NF EN 1618
HAP (6 Borneff) - somme	mg/kg Ms	n.d.				ent à NF EN 1618
Somme HAP (VROM)	mg/kg Ms	n.d.			· · · · · · · · · · · · · · · · · · ·	ent à NF EN 1618
HAP (EPA) - somme	mg/kg Ms	n.d.			équivale	ent à NF EN 1618
Composés aromatiques						
Benzène	mg/kg Ms	<0,050	0,05			ISO 22155
Toluène	mg/kg Ms	<0,050	0,05			ISO 22155
Ethylbenzène	mg/kg Ms	<0,050	0,05			ISO 22155
m,p-Xylène	mg/kg Ms	<0,10	0,1			ISO 22155
o-Xylène	mg/kg Ms	<0,050	0,05			ISO 22155
Naphtalène	mg/kg Ms	<0,10	0,1			ISO 22155
Somme Xylènes	mg/kg Ms	n.d.	-,.			ISO 22155
BTEX total	*) mg/kg Ms	n.d.				ISO 22155
COHV						
Chlorure de Vinyle	mg/kg Ms	<0,02	0,02			ISO 22155
Dichlorométhane	mg/kg Ms	<0,02	0,02			ISO 22155
	g/ Ng 1710	<0,05	0,00			JU 22 100

COHV

╼					
лè	Chlorure de Vinyle	mg/kg Ms	<0,02	0,02	ISO 22155
araı	Dichlorométhane	mg/kg Ms	<0,05	0,05	ISO 22155

RvA L 005

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

•	` '				
			Limite	Incert.	
	Unité	Résultat	Quant.	Résultat %	Méthode
Trichlorométhane	mg/kg Ms	<0,05	0,05		ISO 22155
Tétrachlorométhane	mg/kg Ms	<0,05	0,05		ISO 22155
Trichloroéthylène	mg/kg Ms	<0,05	0,05		ISO 22155
Tétrachloroéthylène	mg/kg Ms	<0,05	0,05		ISO 22155
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
1,1,2-Trichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
1,1-Dichloroéthane	mg/kg Ms	<0,10	0,1		ISO 22155
1,2-Dichloroéthane	mg/kg Ms	<0,05	0,05		ISO 22155
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	0,025		ISO 22155
1,1-Dichloroéthylène	mg/kg Ms	<0,10	0,1		ISO 22155
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	0,025		ISO 22155
Somme cis/trans-1,2-Dichloroéthylènes	mg/kg Ms	n.d.			ISO 22155
Hydrocarbures totaux (ISO)	·				·
Fraction aliphatique C5-C6	mg/kg Ms	<0,20	0,2		conforme à NEN-EN-ISO 16558-1
F	ma/ka Ma	.4 O Y)	4		conforma à NEN EN ICO 16550 1

Hv	droca	rhures	totaux	(ISO)
117	ui 066	แมนเธอ	illaux	いつしょ

Tryurocarbures totaux (130)				
Fraction aliphatique C5-C6	mg/kg Ms	<0,20	0,2	conforme à NEN-EN-ISO 16558-1
Fraction C5-C10	mg/kg Ms	<1,0 x)	1	conforme à NEN-EN-ISO 16558-1
Fraction >C6-C8	mg/kg Ms	<0,40 x)	0,4	conforme à NEN-EN-ISO 16558-1
Fraction C8-C10	mg/kg Ms	<0,40 x)	0,4	conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	0,2	conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	0,2	conforme à NEN-EN-ISO 16558-1
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	0,2	conforme à NEN-EN-ISO 16558-1
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	0,2	conforme à NEN-EN-ISO 16558-1
Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	20	ISO 16703
Fraction C10-C12	mg/kg Ms	<4,0	4	ISO 16703
Fraction C12-C16	mg/kg Ms	<4,0	4	ISO 16703
Fraction C16-C20	mg/kg Ms	<2,0	2	ISO 16703
Fraction C20-C24	mg/kg Ms	<2,0	2	ISO 16703
Fraction C24-C28	mg/kg Ms	<2,0	2	ISO 16703
Fraction C28-C32	mg/kg Ms	<2,0	2	ISO 16703
Fraction C32-C36	mg/kg Ms	<2,0	2	ISO 16703
Fraction C36-C40	mg/kg Ms	<2,0	2	ISO 16703

Dolyahlarahinhánylas

; <u>t</u>	Polychioropiphenyles				
3	Somme 6 PCB	mg/kg Ms	n.d.		NEN-EN 16167
<u> </u>	Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.		NEN-EN 16167
B	PCB (28)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
į F	PCB (52)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
F	PCB (101)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
Š F	PCB (118)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
Š F	PCB (138)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
F	PCB (153)	mg/kg Ms	<0,001	0,001	NEN-EN 16167
ļ [PCR (180)	ma/ka Ms	<0.001	0.001	NEN-EN 16167

Analyses sur éluat après lixiviation

					Date N° Client	20.06.202 3500495
RAPPORT D'ANALYSES						
n° Cde	1165	024 A2205-313_E	EPFLi_C	ombleux_s	ol	
N° échant.	3653	87 Solide / Eluat				
Spécification des échantillons	S18	(0-1)				
		()	Limite	Incert.		
	Unité	Résultat	Quant.	Résultat %	Méthode	
Trichlorométhane	mg/kg Ms	<0,05	0,05			ISO 22155
Tétrachlorométhane	mg/kg Ms	<0,05	0,05			ISO 22155
Trichloroéthylène	mg/kg Ms	<0,05	0,05			ISO 22155
Tétrachloroéthylène	mg/kg Ms	<0,05	0,05			ISO 22155
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	0,05			ISO 22155
1,1,2-Trichloroéthane	mg/kg Ms	<0,05	0,05			ISO 22155
1,1-Dichloroéthane 1,2-Dichloroéthane	mg/kg Ms mg/kg Ms	<0,10 <0,05	0,1 0,05			ISO 22155 ISO 22155
cis-1,2-Dichloroéthène	mg/kg Ms	<0,03	0,03			ISO 22155
1,1-Dichloroéthylène	mg/kg Ms	<0,023	0,023			ISO 22155
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	0,025			ISO 22155
Somme cis/trans-1,2-Dichloroéthylènes	mg/kg Ms	n.d.	0,020			ISO 22155
Hydrocarbures totaux (ISO)					-	
Fraction aliphatique C5-C6	mg/kg Ms	<0,20	0,2		conforme	à NEN-EN-ISO 16558-1
Fraction C5-C10	mg/kg Ms	<1,0 x)	1		conforme	à NEN-EN-ISO 16558-1
Fraction >C6-C8	mg/kg Ms	<0,40 ×)	0,4		conforme	à NEN-EN-ISO 16558-1
Fraction C8-C10	mg/kg Ms	<0,40 ×)	0,4		conforme	à NEN-EN-ISO 16558-1
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	0,2			à NEN-EN-ISO 16558-1
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	0,2			à NEN-EN-ISO 16558-1
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	0,2			à NEN-EN-ISO 16558-1
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	0,2		conforme	à NEN-EN-ISO 16558-1
Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	20			ISO 16703
T TACTION O TO O TZ	*) mg/kg Ms *) mg/kg Ms	<4,0	4			ISO 16703
T TOOLIOTT O TE O TO	*) mg/kg Ms *) mg/kg Ms	<4,0	4			ISO 16703
Traction C10-020	*) mg/kg Ms	<2,0	2			ISO 16703 ISO 16703
	*) mg/kg Ms	<2,0 <2,0	2			ISO 16703
	*) mg/kg Ms	<2,0	2			ISO 16703
	*) mg/kg Ms	<2,0	2			ISO 16703
Fraction C36-C40	*) mg/kg Ms	<2,0	2			ISO 16703
Polychlorobiphényles	1 0 0	,-,				
Somme 6 PCB	mg/kg Ms	n.d.			N	EN-EN 16167
Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.				EN-EN 16167
PCB (28)	mg/kg Ms	<0,001	0,001			EN-EN 16167
PCB (52)	mg/kg Ms	<0,001	0,001			EN-EN 16167
PCB (101)	mg/kg Ms	<0,001	0,001			EN-EN 16167
PCB (118)	mg/kg Ms	<0,001	0,001		N	EN-EN 16167
PCB (138)	mg/kg Ms	<0,001	0,001			EN-EN 16167
PCB (153)	mg/kg Ms	<0,001	0,001			EN-EN 16167
PCB (180)	mg/kg Ms	<0,001	0,001		N N	EN-EN 16167
Analyses sur éluat après lixiv						
L/S cumulé	ml/g	10,0	0,1			n norme lixiviation
Conductivité électrique	μS/cm	72,1	5	+/- 10		n norme lixiviation
pH		8,1	0	+/- 5		n norme lixiviation
Température	°C	19,8	0		Selo	n norme lixiviation
Analyses Physico-chimiques	sur éluat					
Résidu à sec	mg/l	<100	100		Equivale	ent à NF EN ISO 15216

Analyses Ph	ysico-chimic	ques sur éluat
-------------	--------------	----------------

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 20.06.2022 N° Client 35004955

RAPPORT D'ANALYSES

n° Cde 1165024 A2205-313_EPFLi_Combleux_sol

365387 Solide / Eluat N° échant.

Spécification des échantillons S18 (0-1)

	Unité	Résultat	Limite Quant.	ncert. Résultat %	Méthode
Fluorures (F)	mg/l	0,2	0,1	+/- 10	Conforme à ISO 10359-1, conforme à EN 16192
Indice phénol	mg/l	<0,010	0,01		NEN-EN 16192
Chlorures (CI)	mg/l	0,9	0,1	+/- 10	Conforme à ISO 15923-1
Sulfates (SO4)	mg/l	<5,0	5		Conforme à ISO 15923-1
СОТ	mg/l	1,6	1	+/- 10	conforme EN 16192
Métaux sur éluat					
Antimoino (Sh)	ua/l	-5 ∩	5		Conforme à EN-ISO 17294-2

EN ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du symbole " *)

la norme

accrédités selon

sont

S S

es paramètres réalisés par AL-West

Métaux sur éluat					
Antimoine (Sb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Arsenic (As)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Baryum (Ba)	μg/l	<10	10		Conforme à EN-ISO 17294-2 (2004)
Cadmium (Cd)	μg/l	<0,1	0,1		Conforme à EN-ISO 17294-2 (2004)
Chrome (Cr)	μg/l	<2,0	2		Conforme à EN-ISO 17294-2 (2004)
Cuivre (Cu)	μg/l	2,9	2	+/- 10	Conforme à EN-ISO 17294-2 (2004)
Mercure	μg/l	° <0,03	0,03		méthode interne (conforme NEN- EN-ISO 12846)
Molybdène (Mo)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Nickel (Ni)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Plomb (Pb)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Sélénium (Se)	μg/l	<5,0	5		Conforme à EN-ISO 17294-2 (2004)
Zinc (Zn)	μg/l	5,2	2	+/- 10	Conforme à EN-ISO 17294-2 (2004)

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

pe) La limite de quantification a été augmentée puisque l'influence perturbatrice de la matrice a nécessité un changement dans le ratio quantité d'échantillon/agent d'extraction

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé.

Le calcul de l' incertitude de mesure analytique combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l' expression de l' incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordtest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d'élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance).

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Début des analyses: 10.06.2022 Fin des analyses: 17.06.2022

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 20.06.2022 N° Client 35004955

RAPPORT D'ANALYSES

n° Cde **1165024** A2205-313_EPFLi_Combleux_sol

N° échant. 365387 Solide / Eluat

Spécification des échantillons S18 (0-1)

AL-West B.V. Mme Fatima-Zahra Saati, Tel. 33/380680132 Chargée relation clientèle

p

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Annexe de N° commande 1165024

CONSERVATION, TEMPS DE CONSERVATION ET FLACONNAGE

Le délai de conservation des échantillons est expiré pour les analyses suivantes :

365373, 365377, 365378, 365385 1,1-Dichloroéthylène 365373, 365377, 365378, 365385 o-Xylène cis-1,2-365373, 365377, 365378, 365385 Dichloroéthène

Toluène 365373, 365377, 365378, 365385 Trans-1,2-365373, 365377, 365378, 365385 Dichloroéthylène

Somme Xylènes 365373, 365377, 365378, 365385 1,1,1-Trichloroéthane 365373, 365377, 365378, 365385 1,1-Dichloroéthane 365373, 365377, 365378, 365385 Ethylbenzène 365373, 365377, 365378, 365385 Tétrachloroéthylène 365373, 365377, 365378, 365385

Tétrachlorométhane 365373, 365377, 365378, 365385 Hydrocarbures totaux 365370

C10-C40

Fraction C24-C28 365370

Trichlorométhane 365373, 365377, 365378, 365385 1,2-Dichloroéthane 365373, 365377, 365378, 365385 Trichloroéthylène 365373, 365377, 365378, 365385 Chlorure de Vinyle 365373, 365377, 365378, 365385

Fraction C20-C24 365370

Somme cis/trans-1,2-365373, 365377, 365378, 365385

Dichloroéthylènes

Fraction C10-C12 365370 365370 Fraction C28-C32

Benzène 365373, 365377, 365378, 365385

Fraction C12-C16 365370

Dichlorométhane 365373, 365377, 365378, 365385 1,1,2-Trichloroéthane 365373, 365377, 365378, 365385 norme

Fraction C36-C40 365370

m,p-Xylène 365373, 365377, 365378, 365385

Fraction C16-C20 365370

Naphtalène 365373, 365377, 365378, 365385

Fraction C32-C36 365370

<u>a</u>

et/ou externalisés sont marqués du symbole " *)

accrédités

EN ISO/IEC 17025:2017. Seuls les paramètres non

sont

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

ENVISOL 2-4, rue Hector Berlioz 38110 LA TOUR DU PIN FRANCE

> Date 01.07.2022 N° Client 35004955

RAPPORT D'ANALYSES

n° Cde 1168850 A2205-313_EPFLi_Combleux_sol_stock_echantillon

N° échant. 388048 Solide / Eluat

Date de validation 22.06.2022

Prélèvement **22.06.2022 16:18**

Prélèvement par: Client
Spécification des échantillons S1 (1-2)

Limite Incert.
Unité Résultat Quant. Résultat % Méthode

Prétraitement des échantillons

Prétraitement de l'échantillon		0				Conforme à NEN-EN 16179
Matière sèche	%	0	79,0	0,01	+/- 1	NEN-EN 15934 ; EN12880

Polychlorobiphényles

?	Somme 6 PCB	mg/kg Ms	0,26 x)			NEN-EN 16167
5	Somme 7 PCB (Ballschmiter)	mg/kg Ms	0,27 ^{x)}			NEN-EN 16167
Ž.	PCB (28)	mg/kg Ms	<0,001	0,001		NEN-EN 16167
Š	PCB (52)	mg/kg Ms	0,001	0,001	+/- 33	NEN-EN 16167
-	PCB (101)	mg/kg Ms	0,024	0,001	+/- 34	NEN-EN 16167
נ	PCB (118)	mg/kg Ms	0,004	0,001	+/- 19	NEN-EN 16167
5	PCB (138)	mg/kg Ms	0,068	0,001	+/- 30	NEN-EN 16167
2	PCB (153)	mg/kg Ms	0,086	0,001	+/- 22	NEN-EN 16167
	PCB (180)	mg/kg Ms	0,082	0,001	+/- 12	NEN-EN 16167

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé.

Le calcul de l' incertitude de mesure analytique combinée et élargie mentionné dans le présent rapport est basé sur le GUM (Guide pour l' expression de l' incertitude de mesure, BIPM, CEI, FICC, ISO, UICPA, UIPPA et OIML, 2008) et Nordtest Report (Manuel pour le calcul de l'incertitude de mesure dans les laboratoires d'analyse de l'environnement (TR 537 (ed. 4) 2017). Le facteur d' élargissement utilisé est 2 pour un niveau de probabilité de 95% (intervalle de confiance).

Les analyses réalisées sur solide sont calculées sur la matière sèche. Les analyses marquées ° sont quantifiées par rapport à l'échantillon original.

Début des analyses: 22.06.2022 Fin des analyses: 01.07.2022

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date 01.07.2022 N° Client 35004955

RAPPORT D'ANALYSES

n° Cde 1168850 A2205-313_EPFLi_Combleux_sol_stock_echantillon

N° échant. 388048 Solide / Eluat

Spécification des échantillons S1 (1-2)

DEBRE

AL-West B.V. Mme Carine De Brito, Tel. +33/380680382 Chargée relation clientèle

Annexe 7 : Coupes lithologiques et techniques des piézairs

Référence : A2205-313_R_BB_1b

COUPE LITHOLOGIQUE ET EQUIPEMENT DES PÍÉZAIRS

EN	/ISOL		CLIENT				
56 ruo c	nasselièvre	Société :	EPF				
76000	ROUEN 32 73 10 30	Nom du site :	Nom du site : COMBLEU X		Nom du site : COMBUEU X		
161.02	32 73 70 30	Nom de l'echantillon :	F	206	(S		
ntervenant sur site : BB	/ Ano	Date de réalisation :	71	06/22			

	0	BSERVATIONS	ET CARACTE	ERISTIQUES	DE L'OUVR	AGE	
Equipement en	tete:	Ε. 1	Bouche de	Repère du nive	ellement :	51	el
Profondeur de	l'ouvrage / rep	ère (m) :	1,5	Hauteur capot / sol (cm) : Diamètre du tubage (mm) :		25/33	
Cote relative de	e l'ouvrage (m)		9 12				
Gestion des cu	ttings de foraç	ge: sur site			· in		
Profondeur (m)	Coupe lithologique	Descrip	otion	Remarques	Coupe technique	Equip	ements
0,0		dalle beton remilais salle j argile sæbleus	Rossier marion o	aarge		(2-4 mm)	1 m tube plein ○, 5 m tube crepiné
						Bouchon de fond	

COUPE LITHOLOGIQUE ET EQUIPEMENT DES PÍÉZAIRS

ENVISOL	CLIENT			
56 rue chasselièvre	Société :	EPFLi		
76000 ROUEN Tel : 02 32 73 10 30	Nom du site :	Combleux		
Tel: 02 32 73 10 30	Nom de l'echantillon :	Pra 2 (52)		
Intervenant sur site: BB/AMO	Date de réalisation :	08/06/22		

	OI	BSERVATIONS E	ET CARACT	TERISTIQUES	DE L'OUVR	AGE	
Equipement en tete :		BAC Repère du nivelle		ellement :	Sol-		
Profondeur de	l'ouvrage / rep	ère (m) :	1,5"	Hauteur capot / sol (cm):		-	
Cote relative d	e l'ouvrage (m)	:		Diamètre du tu	ıbage (mm) :	25	3/33
Gestion des cu	ttings de forag	e: Su site					
Profondeur (m)	Coupe lithologique	Descript		Remarques	Coupe technique		ements
0,0 0,8 Am		rembla argiles	ux-manen	charbon		Bouchan cimentation en tête Bouchan de sobranite o, 6 Graviers roulés calibrés (2-4 mm)	∕ m tube plein

COUPE LITHOLOGIQUE ET EQUIPEMENT DES PÍÉZAIRS

ENVISOL			CLIENT				
	56 rue cha	sselièvre		Société :		EPFLi	
76000 ROUEN Tel : 02 32 73 10 30			Nom du site :		Combleix		
			Nom de l'echantillon :		Pra4 (54)		
Intervenar	it sur site : BB/	AMO		Date de réalisation : 08/06/22			
Equipement en		RVATIONS	ET CARACT	Repère du nive	S DE L'OUVR	AGE Sof -	
Profondeur de l'ouvrage / repère (m) :			15	Hauteur capot / sol (cm):		301	
Cote relative de l'ouvrage (m) :			Diamètre du tubage (mm) :		25/33		
Gestion des cu	ttings de forage :	sur site					
Profondeur (m) Coupe Descriptio		ion	Remarques		Equipements		

Gestion des cu	ttings de fora	ge: Sur site			
Profondeur (m)	Coupe lithologique	Description	Remarques	Coupe technique	Equipements
0,0		remblai ay lo-salleux grossion			Bouchon cimentation en tête Bouchon de sobranite 7 m tube plein
1,5		angile faiblement sableuse	140		Graviers roulés calibrés O, 5 m tube crepino (2-4 mm)

COUPE LITHOLOGIQUE ET EQUIPEMENT DES PÎEZAIRS

ENVISOL	CLIENT			
56 rue chasselièvre	Société :	EPFLI		
76000 ROUEN Tel: 02 32 73 10 30	Nom du site :	Combleux		
	Nom de l'echantillon :	Pra 5 (55)		
Intervenant sur site: BB/AHO	Date de réalisation :	8/6/22		

quipement en tete :		BAC	Repère du nive	ellement :	Sol	7 <u>2</u> 1
rofondeur de l'ouvrage / repère	e (m) :	1,5	Hauteur capot	Hauteur capot / sol (cm) : Diamètre du tubage (mm) :		**
ote relative de l'ouvrage (m) :	9	-	Diamètre du tu			5/33
estion des cuttings de forage	: sur sit	و				
rofondeur (m) Coupe	Descrip	otion	Remarques	Coupe technique	Equip	ements
0,8 1 m -	remblai sable g ngileux mandu emblai de m abbewe par p		0		Bouchon cimentation en tête Bouchon de sobranite Graviers roulés calibrés	1 m tube plein

Annexe 8 : Fiches de prélèvements des piézairs

Référence : A2205-313_R_BB_1b

ENVISOL

FICHE DE PRELEVEMENT DES GAZ DU SOL

Société :

CLIENT

2 - 4 rue Hector Berlioz 38 110 La Tour du pin Tel : 04.74.83.62.16 - Fax : 04.74.33.97.83		Nom du site :	Com	Sleex	
		Nom de l'echantillon :	Piol	C	
		Coordonnées de l'ouvrage :	6238/	16,18 675631	3,75
PRELEVEMENTS Intervenant :	: BB AMO Date :	08/06/22	Heure :	12445	
OBSEDVA	TIONS ET CAD	CTERISTIQUES DE L'OUV	DACE		
Nature de l'ouvrage (canne-gaz oupiézair) :	TIONS ET CARA	Nature et état de la couverture du	THE RESERVE OF THE PARTY OF THE	100 10	
Profondeur de l'ouvrage / repère (m) :	15	Nature des terrains en face de la	0.074.747.14.2	alle belon	
Profondeur de la crépine / repère (m/sol) :	1/1/3	Vérification absence d'eau dans le	Manager	agice recorduse	4
Diamètre du tubage (mm) :	25	Profondeur de la nappe / repère (r	2 • C. A. C.	2	-
Nature de l'étanchéité en tête du piézair :	BAC	Volume du piézair (I) :	ny.	0,00	5
					_
CONDITI	ONS ATMOSPHE	ERIQUES ET ENVIRONNEM	ENT		
	The second second	Station m	étéorolog	ique	
Méteo :	solail	Température extérieure moyenne		22.6	
Date des dernières pluies :	matin	Vitesse du vent (m/s) :		intérieur	
Etat d'humidité des sols :	sec	Humidité atmosphérique (%) :		62,3	1
Milieu environnant (urbain, rural, Zl) :	friche	Pression atmosphérique (hPa) :	Pression atmosphérique (hPa) :		
	PURGE D	DE L'OUVRAGE 8 m	6		
Temps de purge (min) :	8	Mesure PID en début de purge (pp		20 0 A > N	12'
Debit du PID (L/min) :	0,5	Mesure PID en milieu de purge (pp	pm)	0,5	
Volume total purgé (L) :	4	Mesure PID en fin de purge (ppm)	Mesure PID en fin de purge (ppm)		
			of a 1	0,5	_
	PRELEVEM	ENT ET SUPPORT			
Profondeur du prélèvement / repère (m) :	1	Prélèvement vacue case :		9	
Nature du support :	sai tedler	Débit de prélèvement (L/min)		9	1
Volume prélevé (L)	2	Observations :		7	1
					_
FLAC	ONNAGE, CONS	ERVATION ET TRANSPOR	T		
Code barre échantillon :	/	Nom du laboratoire :		Explorair	
Paramètres à analyser :	TPH, WHV, B	Date d'envoi de l'échantillon :		09/06/2022	?
		Date de réception par le laboratoir	e:	94/06/9.99)
				~ 1/0- make	-

FICHE DE PRELEVEMENT DES GAZ DU SOL

ENVISOL	CLIENT			
		Société :	EPFL:	
2 - 4 rue Hector Berlioz	Nom du site : Canfle			
38 110 La Tour du pin Tel : 04.74.83.62.16 - Fax : 04.74.	33.97.83	Nom de l'echantillon :	Pag 5	
8 8 9 9 9		Coordonnées de l'ouvrage :	6941024	0 6756271,06
PRELEVEMENTS Intervenant :	BB Date:	03/06/92	Heure :	25
			710	<i>V</i>)
	ONS ET CARAC	TERISTIQUES DE L'OUVR	AND DESCRIPTION OF THE PERSON	10 10
Nature de l'ouvrage (canne-gaz ou piézair) :		Nature et état de la couverture du s	ol : /	emblas sablei
Profondeur de l'ouvrage / repère (m) :	1,5	Nature des terrains en face de la cr	épine :	mylai marke +
Profondeur de la crépine / repère (m/sol) :	T	Vérification absence d'eau dans le p	piézair :	of war
Diamètre du tubage (mm) :	25	Profondeur de la nappe / repère (m)	:	3
Nature de l'étanchéité en tête du piézair :	BAC	Volume du piézair (I) :		0,00
CONDITION	IS ATMOSPHER	IQUES ET ENVIRONNEME		
	0.1	Station mé		e
Méteo :	solal	Température extérieure moyenne (°	C):	20,6
Date des dernières pluies :	veille malin	Vitesse du vent (m/s) :		or +
Etat d'humidité des sols :	sec	Humidité atmosphérique (%) :	4	53,9
Milieu environnant (urbain, rural, Zl):	Price	Pression atmosphérique (hPa):		1005,1
	0			
	PURGE DE	L'OUVRAGE		
Temps de purge (min) :	8	Mesure PID en début de purge (ppn	1)	1,2 162
Debit du PID (L/min) :	95	Mesure PID en milieu de purge (ppr	n) (7.7
Volume total purgé (L) :	4	Mesure PID en fin de purge (ppm)	c	e 7
	DDEL EVENAEN	IT ET SUPPORT		
Professional Control Control Control	PRELEVEIVIEN	A PER LIBYOUT SANATED PROPERTY.	THE PART OF	0
Profondeur du prélèvement / repère (m) :	1 100	Prélèvement vacue case :		_2
Nature du support :	sac tedlar	Débit de prélèvement (L/min)		2
Volume prélevé (L)	2	Observations:		
FLACON	INAGE, CONSEI	RVATION ET TRANSPORT		
Code barre échantillon :	/	Nom du laboratoire :	(Explorair
Paramètres à analyser :	TPH, COHV	Date d'envoi de l'échantillon :	0	9/06/22
	BTEXN	Date de réception par le laboratoire		14/06/22

FICHE DE PRELEVEMENT DES GAZ DU SOL

ENVISOL	CLIENT			
		Société :	EPFL	i
2 - 4 rue Hector Berlioz 38 110 La Tour du pin Tel : 04.74.83.62.16 - Fax : 04.74.33.97.83		Nom du site :	Comble	ev»
		Nom de l'echantillon :	Pral	,
		Coordonnées de l'ouvrage :		70 16756367,
PRELEVEMENTS Intervenant :	BB Date:	9/06/22	Heure : /	10,52
ORSERVATI	ONS ET CARAC	TERISTIQUES DE L'OUVE	PAGE	
Nature de l'ouvrage (canne-gaz ou piézair);	ONS ET CARAC	Nature et état de la couverture du :		100 100- 100 to
Profondeur de l'ouvrage / repère (m) :	10	Nature des terrains en face de la c		asolo relleme
Profondeur de la crépine / repère (m/sol) :	1	Vérification absence d'eau dans le		of the same
Diamètre du tubage (mm) :	93	Profondeur de la nappe / repère (m		3
Nature de l'étanchéité en tête du piézair :	BAC	Volume du piézair (I) :	•	0,00
	W.1-			
CONDITION	S ATMOSPHER	RIQUES ET ENVIRONNEM	ENT	
		Station mé	téorologi	que
Méteo :	Solail	Température extérieure moyenne ((°C) :	221
Date des dernières pluies :	veille matin	Vitesse du vent (m/s) :		2,5
Etat d'humidité des sols :	Sec	Humidité atmosphérique (%) :		50,4
Milieu environnant (urbain, rural, Zl) :	friche	Pression atmosphérique (hPa) :		
	PURGE DE	L'OUVRAGE		
Temps de purge (min) :	8	Mesure PID en début de purge (pp	m)	0,2 16,52
Debit du PID (L/min) :	0,5	Mesure PID en milieu de purge (pp	m)	0,7
Volume total purgé (L) :	4	Mesure PID en fin de purge (ppm)		0,7
	PRELEVEMEN	NT ET SUPPORT		
Profondeur du prélèvement / repère (m) :	1	Prélèvement vacue case :	In the sale	9
Nature du support :	sai tedlar	Débit de prélèvement (L/min)		2
Volume prélevé (L)	2	Observations :		/
FLACO	NAGE CONSE	RVATION ET TRANSPOR		
Code barre échantillon :		Nom du laboratoire :		Explain
Paramètres à analyser :	TPH, COHV,	Date d'envoi de l'échantillon :		09/06/22
1.0 (a) 1.0 (a) 1.0 (a) 1.0 (a) (a) 1	BTEXN	The state of the s		24/06/22
	A CONTRACTOR OF THE PARTY OF TH			1

FICHE DE PRELEVEMENT DES GAZ DU SOL

ENVISOL		CI	LIENT	
		Société :	EPF	Li
2 - 4 rue Hector Berl 38 110 La Tour du p	Nom du site :	Comb	1	
Tel : 04.74.83.62.16 - Fax : 04		Nom de l'echantillon :	Pza.	
		Coordonnées de l'ouvrage :	62396	5,85 1675642,
PRELEVEMENTS Intervenant :	BB Date :	03/06/22	111/15	
OBSERVA	TIONS ET CARA	CTERISTIQUES DE L'OUVI	RAGE	
Nature de l'ouvrage (canne-gaz ou piézair) :		Nature et état de la couverture du	Al-William Cont.	10. Ilai asaita
Profondeur de l'ouvrage / repère (m) :	1.5	Nature des terrains en face de la c	répine :	rembla angilean
Profondeur de la crépine / repère (m/sol) :	1	Vérification absence d'eau dans le		Ø
Diamètre du tubage (mm) :	25	Profondeur de la nappe / repère (m		3
Nature de l'étanchéité en tête du piézair :	BAC	Volume du piézair (i) :		0,00
Méteo :	COLVERT	Station mé	Name and Address of the Owner, where the Party of the Owner, where the Party of the Owner, where the Owner, which the Owner,	- 2
Méteo ;	convert	Température extérieure moyenne (Name and Address of the Owner, where the Party of the Owner, where the Party of the Owner, where the Owner, which the Owner,	22,3
Date des dernières pluies :	veille natin	Vitesse du vent (m/s) :		11
Etat d'humidité des sols :	Sec	Humidité atmosphérique (%) :		55.2
Milieu environnant (urbain, rural, Zl) :	friche	Pression atmosphérique (hPa) :		1005,9
NEW CONTRACTOR	PURGE D	E L'OUVRAGE	Ware C	
Temps de purge (min) :	8	Mesure PID en début de purge (ppr	m) ,	0 11/1/5
Debit du PID (L/min) :	0,5	Mesure PID en milieu de purge (pp	m)	0
Volume total purgé (L) :	4	Mesure PID en fin de purge (ppm)		0
Aprile 1			PF 4.1	
	7	ENT ET SUPPORT		
Profondeur du prélèvement / repère (m) :	1	Prélèvement vacue case :		2
Nature du support :	sec todas	Débit de prélèvement (L/min)		2
Volume prélevé (L)	2	Observations:		/
FLACO	NNAGE, CONSE	ERVATION ET TRANSPORT		Sec. White
Code barre échantillon :		Nom du laboratoire :		Exdorair
Paramètres à analyser :	TPH, WHV,	Date d'envoi de l'échantillon :		Explorain 09/06/22
	BTEXN	Date de réception par le laboratoire	:	94/06/199

Annexe 9: Bordereaux d'analyses des laboratoire EXPLORAIR (gaz du sol)

Référence : A2205-313_R_BB_1b

ENVISOL	Date : 27/06/2022
Pullation d'amarluses	Version : A
Bulletin d'analyses	Page : 1/3

Bulletin d'analyse selon l'affaire n°A-2205-313 et la commande n°8010, Site de « Combleux » à l'attention de :

Alice MONCORGER ENVISOL 2-4 rue Hector Berlioz 38110 LA TOUR DU PIN

Ce document ne peut être reproduit partiellement sans l'accord écrit d'EXPLORAIR. Ce rapport ne concerne que les échantillons soumis à l'analyse.

Rédigé par : M. BABOUD	Validé par : G. PASCAL		
of the day	Angel and the second se		
Le: 27/06/2022	Le: 27/06/2022		

ENVISOL

Date : 27/06/2022

Bulletin d'analyses

Version : A
Page : 2/3

Méthode d'essai :

Type de gaz	Principe d'échantillonnage	Paramètres mesuré	Appareil d'analyse
Gaz du sol	Sac Tedlar	TPH COHV, BTEX, Naphthalene	TD/GC/MS

Echantillons:

Echantillons	Echantillonnage	Date de prélèvement	Date de réception	Date d'analyse	
Pza 2	Sac Tedlar	09/06/2022	13/06/2022	14/06/2022	
Pza 4	Sac Tedlar	09/06/2022	13/06/2022	14/06/2022	
Pza 5	Sac Tedlar	09/06/2022	13/06/2022	14/06/2022	
Pza 6	Sac Tedlar	08/06/2022	13/06/2022	14/06/2022	

Tableau d'incertitude :

Le tableau ci-dessous donne les incertitudes de mesures, calcul issu de la norme ISO 11352.

Gamme de concentration	Incertitude
De 10 (LQ) à 330 μ g/(n)m ³	+/- 40%
Supérieure à 330 μg/(n)m ³	+/- 30%

ENVISOL

Bulletin d'analyses

Date : 27/06/2022

Version : A

Page : 3/3

Résultats :

ıltats :				
	Pza 2	Pza 4	Pza 5	Pza 6
Unités	$\mu g/(n)m^3$	$\mu g/(n)m^3$	$\mu g/(n)m^3$	$\mu g/(n)m^3$
Naphthalène	< 10	< 10	< 10	< 10
BTEX				
Benzène	< 10	< 10	< 10	< 10
Toluène	37	136	40	78
Ethylbenzène	< 10	33	10	14
m,p-Xylènes	30	185	39	51
o-Xylène	12	65	15	18
Somme BTEX	80	418	103	161
COHV				
1,1-Dichloroéthène	< 10	< 10	< 10	< 10
Chlorure de Vinyle	< 10	17	< 10	< 10
Dichlorométhane	< 10	< 10	< 10	< 10
Trans-1,2-Dichloroéthylène	< 10	< 10	< 10	< 10
Cis-1,2 Dichloroéthylène	< 10	< 10	< 10	< 10
1,2-Dichloroéthane	< 10	< 10	< 10	< 10
1,1,1-Trichloroéthane	< 10	< 10	< 10	< 10
Tétrachlorométhane	< 10	< 10	< 10	< 10
Trichloroéthylène	< 10	< 10	< 10	32
Tetrachloroéthylène	< 10	< 10	< 10	< 10
Chloroforme	< 10	< 10	< 10	< 10
1,1-Dichloroéthane	< 10	< 10	< 10	< 10
1,1,2-Trichloroéthane	< 10	< 10	< 10	< 10
Somme des COHV	< 10	17	< 10	32
Hydrocarbures volatils				
Somme des hydrocarbures aliphatiques	613	1089	879	857
Hydrocarbures aliphatiques >C5-C6	158	161	135	164
Hydrocarbures aliphatiques >C6-C8	109	111	80	74
Hydrocarbures aliphatiques >C8-C10	41	70	42	50
Hydrocarbures aliphatiques >C10-C12	221	495	398	373
Hydrocarbures aliphatiques >C12-C16	84	253	223	196
Somme des hydrocarbures aromatiques	109	515	135	189
Hydrocarbures aromatiques >C6-C7	< 10	< 10	< 10	< 10
Hydrocarbures aromatiques >C7-C8	37	136	40	78
Hydrocarbures aromatiques >C8-C10	71	379	95	111
Hydrocarbures aromatiques >C10-C12	< 10	< 10	< 10	< 10
Hydrocarbures aromatiques >C12-C16	< 10	< 10	< 10	< 10

--- Fin du rapport ---